186 research outputs found

    A gene expression predictor of response to EGFR-targeted therapy stratifies progression-free survival to cetuximab in KRAS wild-type metastatic colorectal cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anti-EGFR monoclonal antibody cetuximab is used in metastatic colorectal cancer (CRC), and predicting responsive patients garners great interest, due to the high cost of therapy. Mutations in the KRAS gene occur in ~40% of CRC and are a negative predictor of response to cetuximab. However, many KRAS-wildtype patients do not benefit from cetuximab. We previously published a gene expression predictor of sensitivity to erlotinib, an EGFR inhibitor. The purpose of this study was to determine if this predictor could identify KRAS-wildtype CRC patients who will benefit from cetuximab therapy.</p> <p>Methods</p> <p>Microarray data from 80 metastatic CRC patients subsequently treated with cetuximab were extracted from the study by Khambata-Ford et al. The study included KRAS status, response, and PFS for each patient. The gene expression data were scaled and analyzed using our predictive model. An improved predictive model of response was identified by removing features in the 180-gene predictor that introduced noise.</p> <p>Results</p> <p>Forty-three of eighty patients were identified as harboring wildtype-KRAS. When the model was applied to these patients, the predicted-sensitive group had significantly longer PFS than the predicted-resistant group (median 88 days vs. 56 days; mean 117 days vs. 63 days, respectively, p = 0.008). Kaplan-Meier curves were also significantly improved in the predicted-sensitive group (p = 0.0059, HR = 0.4109. The model was simplified to 26 of the original 180 genes and this further improved stratification of PFS (median 147 days vs. 56.5 days in the predicted sensitive and resistant groups, respectively, p < 0.0001). However, the simplified model will require further external validation, as features were selected based on their correlation to PFS in this dataset.</p> <p>Conclusion</p> <p>Our model of sensitivity to EGFR inhibition stratified PFS following cetuximab in KRAS-wildtype CRC patients. This study represents the first true external validation of a molecular predictor of response to cetuximab in KRAS-WT metastatic CRC. Our model may hold clinical utility for identifying patients responsive to cetuximab and may therefore minimize toxicity and cost while maximizing benefit.</p

    Impact of the Specific Mutation in KRAS Codon 12 Mutated Tumors on Treatment Efficacy in Patients with Metastatic Colorectal Cancer Receiving Cetuximab-Based First-Line Therapy: A Pooled Analysis of Three Trials

    Get PDF
    Purpose: This study investigated the impact of specific mutations in codon 12 of the Kirsten-ras (KRAS) gene on treatment efficacy in patients with metastatic colorectal cancer (mCRC). Patients: Overall, 119 patients bearing a KRAS mutation in codon 12 were evaluated. All patients received cetuximab-based first-line chemotherapy within the Central European Cooperative Oncology Group (CECOG), AIO KRK-0104 or AIO KRK-0306 trials. Results: Patients with KRAS codon 12 mutant mCRC showed a broad range of outcome when treated with cetuximab-based first-line regimens. Patients with tumors bearing a KRAS p.G12D mutation showed a strong trend to a more favorable outcome compared to other mutations (overall survival 23.3 vs. 14-18 months; hazard ratio 0.66, range 0.43-1.03). An interaction model illustrated that KRAS p.G12C was associated with unfavorable outcome when treated with oxaliplatin plus cetuximab. Conclusion: The present analysis suggests that KRAS codon 12 mutation may not represent a homogeneous entity in mCRC when treated with cetuximab-based first-line therapy. Copyright (C) 2012 S. Karger AG, Base

    Max-Margin Dictionary Learning for Multiclass Image Categorization

    Full text link
    Abstract. Visual dictionary learning and base (binary) classifier train-ing are two basic problems for the recently most popular image cate-gorization framework, which is based on the bag-of-visual-terms (BOV) models and multiclass SVM classifiers. In this paper, we study new algo-rithms to improve performance of this framework from these two aspects. Typically SVM classifiers are trained with dictionaries fixed, and as a re-sult the traditional loss function can only be minimized with respect to hyperplane parameters (w and b). We propose a novel loss function for a binary classifier, which links the hinge-loss term with dictionary learning. By doing so, we can further optimize the loss function with respect to the dictionary parameters. Thus, this framework is able to further increase margins of binary classifiers, and consequently decrease the error bound of the aggregated classifier. On two benchmark dataset

    Colloquium: Mechanical formalisms for tissue dynamics

    Full text link
    The understanding of morphogenesis in living organisms has been renewed by tremendous progressin experimental techniques that provide access to cell-scale, quantitative information both on theshapes of cells within tissues and on the genes being expressed. This information suggests that ourunderstanding of the respective contributions of gene expression and mechanics, and of their crucialentanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assistthe design and interpretation of experiments, point out the main ingredients and assumptions, andultimately lead to predictions. The newly accessible local information thus calls for a reflectionon how to select suitable classes of mechanical models. We review both mechanical ingredientssuggested by the current knowledge of tissue behaviour, and modelling methods that can helpgenerate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell")and tissue scale ("inter-cell") contributions. We recall the mathematical framework developpedfor continuum materials and explain how to transform a constitutive equation into a set of partialdifferential equations amenable to numerical resolution. We show that when plastic behaviour isrelevant, the dissipation function formalism appears appropriate to generate constitutive equations;its variational nature facilitates numerical implementation, and we discuss adaptations needed in thecase of large deformations. The present article gathers theoretical methods that can readily enhancethe significance of the data to be extracted from recent or future high throughput biomechanicalexperiments.Comment: 33 pages, 20 figures. This version (26 Sept. 2015) contains a few corrections to the published version, all in Appendix D.2 devoted to large deformation

    A randomized, phase III trial of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in first-line treatment of metastatic colorectal cancer: The AIO KRK 0110 Trial/ML22011 Trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several randomized trials have indicated that combination chemotherapy applied in metastatic colorectal cancer (mCRC) does not significantly improve overall survival when compared to the sequential use of cytotoxic agents (CAIRO, MRC Focus, FFCD 2000-05). The present study investigates the question whether this statement holds true also for bevacizumab-based first-line treatment including escalation- and de-escalation strategies.</p> <p>Methods/Design</p> <p>The AIO KRK 0110/ML22011 trial is a two-arm, multicenter, open-label randomized phase III trial comparing the efficacy and safety of capecitabine plus bevacizumab (Cape-Bev) versus capecitabine plus irinotecan plus bevacizumab (CAPIRI-Bev) in the first-line treatment of metastatic colorectal cancer. Patients with unresectable metastatic colorectal cancer, Eastern Cooperative Oncology Group (ECOG) performance status 0-1, will be assigned in a 1:1 ratio to receive either capecitabine 1250 mg/m<sup>2 </sup>bid for 14d (d1-14) plus bevacizumab 7.5 mg/kg (d1) q3w (Arm A) or capecitabine 800 mg/m<sup>2 </sup>BID for 14d (d1-14), irinotecan 200 mg/m<sup>2 </sup>(d1) and bevacizumab 7.5 mg/kg (d1) q3w (Arm B). Patients included into this trial are required to consent to the analysis of tumour tissue and blood for translational investigations. In Arm A, treatment escalation from Cape-Bev to CAPIRI-Bev is recommended in case of progressive disease (PD). In Arm B, de-escalation from CAPIRI-Bev to Cape-Bev is possible after 6 months of treatment or in case of irinotecan-associated toxicity. Re-escalation to CAPIRI-Bev after PD is possible. The primary endpoint is time to failure of strategy (TFS). Secondary endpoints are overall response rate (ORR), overall survival, progression-free survival, safety and quality of life.</p> <p>Conclusion</p> <p>The AIO KRK 0110 trial is designed for patients with disseminated, but asymptomatic mCRC who are not potential candidates for surgical resection of metastasis. Two bevacizumab-based strategies are compared: one starting as single-agent chemotherapy (Cape-Bev) allowing escalation to CAPIRI-Bev and another starting with combination chemotherapy (CAPIRI-Bev) and allowing de-escalation to Cape-Bev and subsequent re-escalation if necessary.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier <a href="http://www.clinicaltrials.gov/ct2/show/NCT01249638">NCT01249638</a></p> <p>EudraCT-No.: 2009-013099-38</p

    Conditional Immortalization of Human B Cells by CD40 Ligation

    Get PDF
    It is generally assumed that human differentiated cells have a limited life-span and proliferation capacity in vivo, and that genetic modifications are a prerequisite for their immortalization in vitro. Here we readdress this issue, studying the long-term proliferation potential of human B cells. It was shown earlier that human B cells from peripheral blood of healthy donors can be efficiently induced to proliferate for up to ten weeks in vitro by stimulating their receptor CD40 in the presence of interleukin-4. When we applied the same stimuli under conditions of modified cell number and culture size, we were surprised to find that our treatment induced B cells to proliferate throughout an observation period of presently up to 1650 days, representing more than 370 population doublings, which suggested that these B cells were immortalized in vitro. Long-term CD40-stimulated B cell cultures could be established from most healthy adult human donors. These B cells had a constant phenotype, were free from Epstein-Barr virus, and remained dependent on CD40 ligation. They had constitutive telomerase activity and stabilized telomere length. Moreover, they were susceptible to activation by Toll-like receptor 9 ligands, and could be used to expand antigen-specific cytotoxic T cells in vitro. Our results indicate that human somatic cells can evade senescence and be conditionally immortalized by external stimulation only, without a requirement for genetic manipulation or oncoviral infection. Conditionally immortalized human B cells are a new tool for immunotherapy and studies of B cell oncogenesis, activation, and function

    Monitoring lactoferrin iron levels by fluorescence resonance energy transfer: A combined chemical and computational study

    Get PDF
    Three forms of lactoferrin (Lf) that differed in their levels of iron loading (Lf, LfFe, and LfFe2) were simultaneously labeled with the fluorophores AF350 and AF430. All three resulting fluorescent lactoferrins exhibited fluorescence resonance energy transfer (FRET), but they all presented different FRET patterns. Whereas only partial FRET was observed for Lf and LfFe, practically complete FRET was seen for the holo form (LfFe2). For each form of metal-loaded lactoferrin, the AF350–AF430 distance varied depending on the protein conformation, which in turn depended on the level of iron loading. Thus, the FRET patterns of these lactoferrins were found to correlate with their iron loading levels. In order to gain greater insight into the number of fluorophores and the different FRET patterns observed (i.e., their iron levels), a computational analysis was performed. The results highlighted a number of lysines that have the greatest influence on the FRET profile. Moreover, despite the lack of an X-ray structure for any LfFe species, our study also showed that this species presents modified subdomain organization of the N-lobe, which narrows its iron-binding site. Complete domain rearrangement occurs during the LfFe to LfFe2 transition. Finally, as an example of the possible applications of the results of this study, we made use of the FRET fingerprints of these fluorescent lactoferrins to monitor the interaction of lactoferrin with a healthy bacterium, namely Bifidobacterium breve. This latter study demonstrated that lactoferrin supplies iron to this bacterium, and suggested that this process occurs with no protein internalization.This work was supported by MINECO and FEDER (projects CTQ2012-32236, CTQ2011-23336, and BIO2012-39682-C02-02) and BIOSEARCH SA. F.C. and V.M.R. are grateful to the Spanish MINECO for FPI fellowships

    Micro RNAs of Epstein-Barr Virus Promote Cell Cycle Progression and Prevent Apoptosis of Primary Human B Cells

    Get PDF
    Cellular and viral microRNAs (miRNAs) are involved in many different processes of key importance and more than 10,000 miRNAs have been identified so far. In general, relatively little is known about their biological functions in mammalian cells because their phenotypic effects are often mild and many of their targets still await identification. The recent discovery that Epstein-Barr virus (EBV) and other herpesviruses produce their own, barely conserved sets of miRNAs suggests that these viruses usurp the host RNA silencing machinery to their advantage in contrast to the antiviral roles of RNA silencing in plants and insects. We have systematically introduced mutations in EBV's precursor miRNA transcripts to prevent their subsequent processing into mature viral miRNAs. Phenotypic analyses of these mutant derivatives of EBV revealed that the viral miRNAs of the BHRF1 locus inhibit apoptosis and favor cell cycle progression and proliferation during the early phase of infected human primary B cells. Our findings also indicate that EBV's miRNAs are not needed to control the exit from latency. The phenotypes of viral miRNAs uncovered by this genetic analysis indicate that they contribute to EBV-associated cellular transformation rather than regulate viral genes of EBV's lytic phase

    KRAB–Zinc Finger Proteins and KAP1 Can Mediate Long-Range Transcriptional Repression through Heterochromatin Spreading

    Get PDF
    Krüppel-associated box domain-zinc finger proteins (KRAB–ZFPs) are tetrapod-specific transcriptional repressors encoded in the hundreds by the human genome. In order to explore their as yet ill-defined impact on gene expression, we developed an ectopic repressor assay, allowing the study of KRAB–mediated transcriptional regulation at hundreds of different transcriptional units. By targeting a drug-controllable KRAB–containing repressor to gene-trapping lentiviral vectors, we demonstrate that KRAB and its corepressor KAP1 can silence promoters located several tens of kilobases (kb) away from their DNA binding sites, with an efficiency which is generally higher for promoters located within 15 kb or less. Silenced promoters exhibit a loss of histone H3-acetylation, an increase in H3 lysine 9 trimethylation (H3K9me3), and a drop in RNA Pol II recruitment, consistent with a block of transcriptional initiation following the establishment of silencing marks. Furthermore, we reveal that KRAB–mediated repression is established by the long-range spreading of H3K9me3 and heterochromatin protein 1 β (HP1β) between the repressor binding site and the promoter. We confirm the biological relevance of this phenomenon by documenting KAP1–dependent transcriptional repression at an endogenous KRAB–ZFP gene cluster, where KAP1 binds to the 3′ end of genes and mediates propagation of H3K9me3 and HP1β towards their 5′ end. Together, our data support a model in which KRAB/KAP1 recruitment induces long-range repression through the spread of heterochromatin. This finding not only suggests auto-regulatory mechanisms in the control of KRAB–ZFP gene clusters, but also provides important cues for interpreting future genome-wide DNA binding data of KRAB–ZFPs and KAP1

    Never Resting Brain: Simultaneous Representation of Two Alpha Related Processes in Humans

    Get PDF
    Brain activity is continuously modulated, even at “rest”. The alpha rhythm (8–12 Hz) has been known as the hallmark of the brain's idle-state. However, it is still debated if the alpha rhythm reflects synchronization in a distributed network or focal generator and whether it occurs spontaneously or is driven by a stimulus. This EEG/fMRI study aimed to explore the source of alpha modulations and their distribution in the resting brain. By serendipity, while computing the individually defined power modulations of the alpha-band, two simultaneously occurring components of these modulations were found. An ‘induced alpha’ that was correlated with the paradigm (eyes open/ eyes closed), and a ‘spontaneous alpha’ that was on-going and unrelated to the paradigm. These alpha components when used as regressors for BOLD activation revealed two segregated activation maps: the ‘induced map’ included left lateral temporal cortical regions and the hippocampus; the ‘spontaneous map’ included prefrontal cortical regions and the thalamus. Our combined fMRI/EEG approach allowed to computationally untangle two parallel patterns of alpha modulations and underpin their anatomical basis in the human brain. These findings suggest that the human alpha rhythm represents at least two simultaneously occurring processes which characterize the ‘resting brain’; one is related to expected change in sensory information, while the other is endogenous and independent of stimulus change
    corecore