84 research outputs found

    Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue

    Get PDF
    PLEXIN D1 (PLXND1) has been implicated in body fat distribution and type 2 diabetes by genome-wide association studies, but the mechanism is unknown. We show here that Plxnd1 regulates body fat distribution in zebrafish by controlling the visceral adipose tissue (VAT) growth mechanism. Plxnd1 deficiency in zebrafish resulted in induction of a hyperplastic state and reduced lipid deposition in VAT. Regulation of VAT was dependent on the induction of the type V collagen, col5a1, suggesting that Plxnd1 controls body fat distribution by determining the status of VAT extracellular matrix. Plxnd1-deficient zebrafish were protected from high-fat-induced insulin resistance, and human PLXND1 mRNA was positively associated with type 2 diabetes. These results suggest that the role of Plxnd1 in body fat distribution and insulin signaling is conserved from zebrafish to humans

    Adipose tissue pathways involved in weight loss of cancer cachexia

    Get PDF
    White adipose tissue (WAT) constitutes our most expandable tissue and largest endocrine organ secreting hundreds of polypeptides collectively termed adipokines. Changes in WAT mass induce alterations in adipocyte secretion and function, which are linked to disturbed whole-body metabolism. Although the mechanisms controlling this are not clear they are dependent on changes in gene expression, a complex process which is regulated at several levels. Results in recent years have highlighted the role of small non-coding RNA molecules termed microRNAs (miRNAs), which regulate gene expression via post-transcriptional mechanisms. The aim of this thesis was to characterize global gene expression levels and describe novel miRNAs and adipokines controlling the function of human WAT in conditions with pathological increases or decreases in WAT mass. Obesity and cancer cachexia were selected as two models since they are both clinically relevant and characterized by involuntary changes in WAT mass. In Study I, expressional analyses were performed in subcutaneous WAT from cancer patients with or without cachexia and obese versus non-obese subjects. In total, 425 transcripts were found to be regulated in cancer cachexia. Pathway analyses based on this set of genes revealed that processes involving extracellular matrix, actin cytoskeleton and focal adhesion were significantly downregulated, whereas fatty acid metabolism was upregulated comparing cachectic with weight-stable cancer subjects. Furthermore, by overlapping these results with microarray data from an obesity study, many transcripts were found to be reciprocally regulated comparing the two conditions. This suggests that WAT gene expression in cancer cachexia and obesity are regulated by similar, albeit opposing, mechanisms. In Study II, the focus was on the family of fibroblast growth factors (FGFs), members of which have recently been implicated in the development of obesity and insulin resistance. A retrospective analysis of global gene expression data identified several FGFs (FGF1/2/7/9/13/18) to be expressed in WAT. However, only one, FGF1, was actively secreted from WAT and predominantly so from the adipocyte fraction. Moreover, FGF1 release was increased in obese compared to non-obese subjects, but was not normalized by weight loss. Although the clinical significance of these findings is not yet clear, it can be hypothesized that FGF1 may play a role in WAT growth, possibly by promoting fat cell proliferation and/or differentiation. In Study III, we identified adipose miRNAs regulated in obesity. Out of eleven miRNAs regulated by changes in body fat mass, ten controlled the production of the pro-inflammatory chemoattractant chemokine (C-C motif) ligand 2 (CCL2) when overexpressed in fat cells and for two, miR-126 and -193b, signaling circuits were defined. In Study IV, a novel adipokine, semaphorin 3C (SEMA3C), was identified by combining transcriptome and secretome data. Detailed studies focusing on SEMA3C revealed that this factor was secreted from adipocytes and induced the expression of extracellular matrix and matricellular genes in preadipocytes. Furthermore, SEMA3C mRNA levels correlated with interstitial fibrosis and insulin resistance in WAT derived from subjects with a wide range in BMI. In summary, the results presented in this thesis have delineated transcriptional alterations in WAT in two clinically relevant conditions, obesity and cancer cachexia. This has allowed the identification of novel adipokines and microRNAs with potential pathophysiological importance. These findings form the basis for further studies aiming at understanding the central role of WAT in disorders associated with metabolic complications

    A Stratified Transcriptomics Analysis of Polygenic Fat and Lean Mouse Adipose Tissues Identifies Novel Candidate Obesity Genes

    Get PDF
    Obesity and metabolic syndrome results from a complex interaction between genetic and environmetal factors. In addition to brain-regulated processes, recent genome wide association studies have indicated that genes highly expressed in adipose tissue affect the distribution and function of fat and thus contribute to obesity. Using a stratified transcriptome gene enrichment approach we attempted to identify adipose tissue-specific obesity genes in the unique polygenic fat (F) mouse strain generated by selective breeding over 60 generations for divergent adiposity from a comparator lean (L) strain. To enrich for adipose tissue obesity genes a ˝snap-shot˝ pooled-sample transcriptome comparison of key fat depots and non adipose tissue (muscle, liver, kidney) was performed. Known obesity quantitative trait loci (QTL) information for the model allowed us to further filter genes for increased likelihood of being causal or secondary for obesity. This successfully identified several genes previously linked to obesity (C1qr1, and Np3r) as positional QTL candidate genes elevated specifically in F line adipose tissue.A number of novel obesity candidate genes were also identified (Thbs1, Ppp1rd, Tmepai, Trp53inp2, Ttc7b, Tuba1a, Fgf13, Fmr) that have inferred rolesin fat cell function. Quantitative microarray analysis was then applied to the most phenotypically divergent adipose depot after exaggerating F and L strain differences with chronic high fat feeding which revealed a dictinct gene expression profile of line, fat depot and diet-responsive inflammatory, angiogenic and metabolic pathaways. Selected candidate genes Npr3 and Thbs1, as well as Gys2, a non-QTL gene that otherwise passed our enrichment criteria were characterised, revealing novel functional effects consistent with a contribution to obesity. A focussed candidate gene enrichment strategy in the unique F and L model has identified novel adipose tissue-enriched genes contributing to obesity

    Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation

    Get PDF
    Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA methylation or Foxp3 binding sites were associated with Treg-specific gene expression. We found that Treg-specific DNA hypomethylated regions were closely associated with Treg up-regulated transcriptional start site clusters, whereas Foxp3 binding regions had no significant correlation with either up- or down-regulated clusters in nonactivated Treg cells. However, in activated Treg cells, Foxp3 binding regions showed a strong correlation with down-regulated clusters. In accordance with these findings, the above two features of activation-dependent gene regulation in Treg cells tend to occur at different locations in the genome. The results collectively indicate that Treg-specific DNA hypomethylation is instrumental in gene up-regulation in steady state Treg cells, whereas Foxp3 down-regulates the expression of its target genes in activated Treg cells. Thus, the two events seem to play distinct but complementary roles in Treg-specific gene expression

    An integrated expression atlas of miRNAs and their promoters in human and mouse

    Get PDF
    MicroRNAs (miRNAs) are short non-coding RNAs with key roles in cellular regulation. As part of the fifth edition of the Functional Annotation of Mammalian Genome (FANTOM5) project, we created an integrated expression atlas of miRNAs and their promoters by deep-sequencing 492 short RNA (sRNA) libraries, with matching Cap Analysis Gene Expression (CAGE) data, from 396 human and 47 mouse RNA samples. Promoters were identified for 1,357 human and 804 mouse miRNAs and showed strong sequence conservation between species. We also found that primary and mature miRNA expression levels were correlated, allowing us to use the primary miRNA measurements as a proxy for mature miRNA levels in a total of 1,829 human and 1,029 mouse CAGE libraries. We thus provide a broad atlas of miRNA expression and promoters in primary mammalian cells, establishing a foundation for detailed analysis of miRNA expression patterns and transcriptional control regions

    Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network

    Get PDF
    Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium provided one of the most comprehensive maps of transcription start sites (TSSs) in several species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at unconventional regions, outside promoters or enhancers. Here, we probe these unassigned TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we develop Cap Trap RNA-seq, a technology which combines cap trapping and long read MinION sequencing. We train sequence-based deep learning models able to predict CAGE signal at STRs with high accuracy. These models unveil the importance of STR surrounding sequences not only to distinguish STR classes, but also to predict the level of transcription initiation. Importantly, genetic variants linked to human diseases are preferentially found at STRs with high transcription initiation level, supporting the biological and clinical relevance of transcription initiation at STRs. Together, our results extend the repertoire of non-coding transcription associated with DNA tandem repeats and complexify STR polymorphism

    The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome.

    Get PDF
    X chromosomes are unusual in many regards, not least of which is their nonrandom gene content. The causes of this bias are commonly discussed in the context of sexual antagonism and the avoidance of activity in the male germline. Here, we examine the notion that, at least in some taxa, functionally biased gene content may more profoundly be shaped by limits imposed on gene expression owing to haploid expression of the X chromosome. Notably, if the X, as in primates, is transcribed at rates comparable to the ancestral rate (per promoter) prior to the X chromosome formation, then the X is not a tolerable environment for genes with very high maximal net levels of expression, owing to transcriptional traffic jams. We test this hypothesis using The Encyclopedia of DNA Elements (ENCODE) and data from the Functional Annotation of the Mammalian Genome (FANTOM5) project. As predicted, the maximal expression of human X-linked genes is much lower than that of genes on autosomes: on average, maximal expression is three times lower on the X chromosome than on autosomes. Similarly, autosome-to-X retroposition events are associated with lower maximal expression of retrogenes on the X than seen for X-to-autosome retrogenes on autosomes. Also as expected, X-linked genes have a lesser degree of increase in gene expression than autosomal ones (compared to the human/Chimpanzee common ancestor) if highly expressed, but not if lowly expressed. The traffic jam model also explains the known lower breadth of expression for genes on the X (and the Z of birds), as genes with broad expression are, on average, those with high maximal expression. As then further predicted, highly expressed tissue-specific genes are also rare on the X and broadly expressed genes on the X tend to be lowly expressed, both indicating that the trend is shaped by the maximal expression level not the breadth of expression per se. Importantly, a limit to the maximal expression level explains biased tissue of expression profiles of X-linked genes. Tissues whose tissue-specific genes are very highly expressed (e.g., secretory tissues, tissues abundant in structural proteins) are also tissues in which gene expression is relatively rare on the X chromosome. These trends cannot be fully accounted for in terms of alternative models of biased expression. In conclusion, the notion that it is hard for genes on the Therian X to be highly expressed, owing to transcriptional traffic jams, provides a simple yet robustly supported rationale of many peculiar features of X's gene content, gene expression, and evolution
    corecore