557 research outputs found
Scattering of a Baseball by a Bat
A ball can be hit faster if it is projected without spin but it can be hit
farther if it is projected with backspin. Measurements are presented in this
paper of the tradeoff between speed and spin for a baseball impacting a
baseball bat. The results are inconsistent with a collision model in which the
ball rolls off the bat and instead imply tangential compliance in the ball, the
bat, or both. If the results are extrapolated to the higher speeds that are
typical of the game of baseball, they suggest that a curveball can be hit with
greater backspin than a fastball, but by an amount that is less than would be
the case in the absence of tangential compliance.Comment: Accepted for publication in American Journal of Physic
Charge-ordering, commensurability and metallicity in the phase diagram of layered Na(x)CoO(2)
The phase diagram of non-hydrated Na(x)CoO(2) has been determined by changing
the Na content x using a series of chemical reactions. As x increases from 0.3,
the ground state goes from a paramagnetic metal to a charge-ordered insulator
(at x=1/2) to a `Curie-Weiss metal' (around 0.70), and finally to a weak-moment
magnetically ordered state (x>0.75). The unusual properties of the state at 1/2
(including particle-hole symmetry at low T and enhanced thermal conductivity)
are described. The strong coupling between the Na ions and the holes is
emphasized.Comment: 4 pages with 3 figures, changed conten
The Relationship between Alcohol Intake and Falls Hospitalization : Results from the EPIC-Norfolk
Acknowledgements The EPIC-Norfolk study (DOI 10.22025/2019.10.105.00004) hasreceived funding from the Medical Research Council (MR/N003284/1 and MC-UU_12015/1) and Cancer Research UK(C864/A14136). We are grateful to all the participants who have been part of the project and to the many members of the study teams at the University of Cambridge who have enabled this researchPeer reviewedPostprin
Plate-impact loading of cellular structures formed by selective laser melting
Porous materials are of great interest because of improved energy absorption over their solid counterparts. Their properties, however, have been difficult to optimize. Additive manufacturing has emerged as a potential technique to closely define the structure and properties of porous components, i.e. density, strut width and pore size; however, the behaviour of these materials at very high impact energies remains largely unexplored. We describe an initial study of the dynamic compression response of lattice materials fabricated through additive manufacturing. Lattices consisting of an array of intersecting stainless steel rods were fabricated into discs using selective laser melting. The resulting discs were impacted against solid stainless steel targets at velocities ranging from 300 to 700 m s-1 using a gas gun. Continuum CTH simulations were performed to identify key features in the measured wave profiles, while 3D simulations, in which the individual cells were modelled, revealed details of microscale deformation during collapse of the lattice structure. The validated computer models have been used to provide an understanding of the deformation processes in the cellular samples. The study supports the optimization of cellular structures for application as energy absorbers. © 2014 IOP Publishing Ltd
Simulation for the oblique impact of a lattice system
The oblique collision between an elastic disk and an elastic wall is
numerically studied.
We investigate the dependency of the tangential coefficient of restitution on
the incident angle of impact.
From the results of simulation, our model reproduces experimental results and
can be explained by a phenomenological theory of the oblique impact.Comment: 30 pages, 9 figures, submitted to J. Phys. Soc. Japa
Body Fat Percentage and Long-Term Risk of Fractures. The EPIC-Norfolk Prospective Population Cohort Study
Funding: MPT, SM, SHK and PKM are recipients of a Malaysian Ministry of Higher Education Fundamental Research Grant Scheme grant (FP102-2019A) which funds SHK’s salary. SRN received Vacation Scholarship Grant from Medical Research Scotland (Vac26 1196-2018). The EPIC-Norfolk study (DOI 10.22025/2019.10.105.00004) has received funding from the Medical Research Council (MR/N003284/1 and MC-UU_12015/1) and Cancer Research UK (C864/A14136).Peer reviewedPublisher PD
Body shape, fear of falling, physical performance, and falls among individuals aged 55 years and above
Acknowledgements We would like to thank all MELoR investigations for their help during the data collection. Additionally, we would also like to thank to our funders. The MELoR study was funded by a High Impact Research Grant from the Department of Higher Education, Ministry of Education, Malaysia ((UM.C/625/1/HIR/MOHE/ASH/02). We would also like to acknowledge the financial support provided by University of Malaya under the Wellness Research Centre (WRC) Grand Challenge grant (GC002A-HTM).Peer reviewedPostprin
Advanced Hodgkin lymphoma in the East of England: a 10-year comparative analysis of outcomes for real-world patients treated with ABVD or escalated-BEACOPP, aged less than 60 years, compared with 5-year extended follow-up from the RATHL trial
Treatment with ABVD (doxorubicin, bleomycin, vinblastine, and dacarbazine) or escalated(e)-BEACOPP (bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisolone) remains the international standard of care for advanced-stage classical Hodgkin lymphoma (HL). We performed a retrospective, multicentre analysis of 221 non-trial (“real-world”) patients, aged 16–59 years, diagnosed with advanced-stage HL in the Anglia Cancer Network between 2004 and 2014, treated with ABVD or eBEACOPP, and compared outcomes with 1088 patients in the Response-Adjusted Therapy for Advanced Hodgkin Lymphoma (RATHL) trial, aged 18–59 years, with median follow-up of 87.0 and 69.5 months, respectively. Real-world ABVD patients (n=177) had highly similar 5-year progression-free survival (PFS) and overall survival (OS) compared with RATHL (PFS 79.2% vs 81.4%; OS 92.9% vs 95.2%), despite interim positron-emission tomography-computed tomography (PET/CT)-guided dose-escalation being predominantly restricted to trial patients. Real-world eBEACOPP patients (n=44) had superior PFS (95.5%) compared with real-world ABVD (HR 0.20, p=0.027) and RATHL (HR 0.21, p=0.015), and superior OS for higher-risk (international prognostic score ≥3 [IPS 3+]) patients compared with real-world IPS 3+ ABVD (100% vs 84.5%, p=0.045), but not IPS 3+ RATHL patients. Our data support a PFS, but not OS, advantage for patients with advanced-stage HL treated with eBEACOPP compared with ABVD and suggest higher-risk patients may benefit disproportionately from more intensive therapy. However, increased access to effective salvage therapies might minimise any OS benefit from reduced relapse rates after frontline therapy
Barcoding Bugs: DNA-Based Identification of the True Bugs (Insecta: Hemiptera: Heteroptera)
oxidase I (COI) gene, has been shown to provide an efficient method for the identification of species in a wide range of animal taxa. In order to assess the effectiveness of barcodes in the discrimination of Heteroptera, we examined 344 species belonging to 178 genera, drawn from specimens in the Canadian National Collection of Insects.Analysis of the COI gene revealed less than 2% intra-specific divergence in 90% of the taxa examined, while minimum interspecific distances exceeded 3% in 77% of congeneric species pairs. Instances where barcodes fail to distinguish species represented clusters of morphologically similar species, except one case of barcode identity between species in different genera. Several instances of deep intraspecific divergence were detected suggesting possible cryptic species.Although this analysis encompasses 0.8% of the described global fauna, our results indicate that DNA barcodes will aid the identification of Heteroptera. This advance will be useful in pest management, regulatory and environmental applications and will also reveal species that require further taxonomic research
Hydrogen resist lithography and electron beam lithography for fabricating silicon targets for studying donor orbital states
Recently, phosphorous structures in silicon have been of interest theoretically and experimentally due to their relevance in the field of quantum computing. Coherent control of the orbital states of shallow donors in silicon has been demonstrated in bulk doped samples. Here we discuss the fabrication techniques required to 1) obtain patterned two dimensional dilute sheets of impurities in silicon of controlled doping densities 2) get them to act as targets for a terahertz laser. Scanning tunnelling microscope hydrogen lithography enables patterning of impurity features in silicon with a resolution from 1nm to tens of nm. Molecular beam epitaxy is used for a protective thin-film crystalline silicon growth over the impurity sheet. Electron beam lithography coupled with reactive ion etching allows features from tens to hundreds of microns to be etched into the silicon with 10 to 20nm resolution. The experimental readout is achieved via illumination of the silicon target by terahertz light and subsequent electrical detection. The electrical signal comes from coherent and non-linear excitations of the impurity electrons. This detection technique enables the precision condensed matter samples to remain intact after exposure to the free electron laser pulse
- …