52 research outputs found
New Features of Cervical Cells for Cervical Cancer Diagnostic System Using Neural Network.
Currently, Pap test is the most popular and effective test for cervical cancer. However, Pap test does not always produce good diagnostic performance. This problem has encouraged several studies to develop diagnosis system based on neural networks to increase the diagnostic performance
Automated Seed-Based Region Growing Using The Moving K-Means Clustering For The Detection Of Mammographic Microcalcifications.
Mammography is by far the proven method of early detection of breast cancer. However, mammography is not without its problems. It is amongst the most difficult of radiological
images to interpret as the images are of low contrast and features indicative of abnormalities are very subtle and minute. In this study, a new method of automated edge
detection technique is proposed to detect the abnormalities in a region of interest in a mammogram
Sustainable management using recycle and reuse of construction waste materials in Malaysia / Shaharin Hamid... [et al.]
Ineffective construction waste management has become a serious problem that impacted significantly to environmental pollutions especially in a developing country like Malaysia. Despite the enactment of law by the government, Malaysia is still far behind as compared to other countries like Denmark and Hong Kong in terms of implementation of recycling and reuse of construction waste. Recycling and reuse of waste materials seems to be a profitable method that will boost the lifetime of landfills and cut down the usage of virgin natural resources. This paper discusses the practices of recycling and reuse of construction waste materials in the Klang Valley. A questionnaire survey was administered to 117 respondents from construction companies. The most common types of construction waste materials that can be recycled and reused are concrete, metal, asphalt, brick, plastic, cardboard, timber and glass. A descriptive analysis using Relative Important Index (RII) was used to rank the items asked in the survey. It was found that the most frequent types of recycling and reuse of construction waste materials based on ranking is timber, while the key benefit of recycle and reuse of construction waste is reduction of landfill space. On the other hand, the key challenge that affects recycling and reuse of construction waste is the risk of contamination. This study is beneficial for all parties involved in construction activities to achieve a more sustainable construction in Malaysia and throughout the world
Segmentation Of Stretched Pap Smear Cytology Images Using Clustering Algorithm.
Papanicolaou test or better known as Pap test is the most popular and effective screening test for cervical cancer. At time, however, the detection of abnormal or cancerous cervical cells can be missed due to technical and human errors
The influence of design parameters on the performance of FBAR in 10–14 GHz
This research presents the analysis of the influence of design parameters on the performance of film bilk acoustic wave resonator (FBAR) working from 10 GHz to 14 GHz. The analysis is done by implementing one-dimensional (1-D) modellings, which are 1-D Mason model and Butterworth Van Dyke (BVD) model. The physical parameters such as piezoelectric materials and its thickness, and size of area affecting the characteristics of the FBAR are analyzed in detail. Zinc oxide (ZnO) and aluminum nitride (AlN) are chosen as the piezoelectric materials. The resonance area is varied at 25μm×25μm to 35μm×35μm. From the analysis, it is found that as the frequency increases, the thickness of the piezoelectric material decreases. Meanwhile, the static capacitance increases as the frequency increases. It is also found that as the area increases, the electrical impedance and static capacitance also increases
Preliminary results of electrical characterization of GO towards MCF7 and MCF10a at different concentrations
GO is the 2D carbon sheet with additional functional groups, is more stable in various solvents, easy to be produced and manipulated especially in biological system. At the moment, GO is only utilized as the drug delivery agent during treatment. In this study, the resistivity of GO towards breast cancer cell (MCF7) and normal breast cell (MCF10a) using interdigitated electrodes (IDE) were investigated. The interaction of different concentrations of GO as the sensing material on the tested cells which act as analyte can change electrical response. The tested cell were treated with six different concentrations of GO and was dropped to the IDE with different period of time in order to examine electrical behavior. For MCF10a, at high concentration the resistances of MCF10 remain in the same order of magnitude with increasing time of detection while for MCF7 at high concentration, the resistances were greatly influenced by the time of detection where the value significantly changed after 5 minutes and 10 minutes. The number of viable cell does not give effect to the resistance
Fabricated germanium-doped optical fibres for computed tomography dosimetry: Glow curve characteristics
Fabricated germanium (Ge)-doped optical fibre glow curve characteristics are investigated with respect to computed tomography (CT) dosimetry. 2.3 mol% and 6 mol% Ge-dopant concentration preforms have been used to produce flat and cylindrical fibres (FF and CF) of various size and diameter. The fibres are irradiated to doses of 20, 30 and 40 mGy for each of the beam qualities RQT 8 (100 kV), RQT 9 (120 kV) and RQT 10 (150 kV). The thermoluminescence (TL) kinematic parameters studied are maximum temperature (Tmax), activation energy (Ea) and peak integral (PI). The glow curve formations are reconstructed from the Windows®–based radiation evaluation and management system (WinREMS), deconvoluted using glow curve deconvolution (CGCD) analysis software. The structures of the glow curves are broad single or double-peaked, occurring at relatively high glow peak temperatures, TL response increases with radiation dose and peak height decreases with increasing energy, showing clear photoelectric dependence. The deconvoluted glow curves for all fibres are seen to consist of five individual glow peaks, P1 to P5, P1 being dominant in all cases other than for 6 mol% Ge-FF for which P3 is dominant due to the formation of a double-peaked glow curve. Tmax increases from P1 to P5 for all fibres, throughout the energy range used. P1 and P3 (6 mol% Ge-FF) have the lowest Ea, while P4 shows the greatest Ea for all fibres. The results indicate that electrons in P1 and P3 (6 mol% Ge-FF) are occupied at low energy traps while for P4, the electrons are trapped at a deeper energy level. The lowest PI value, indicative of the least number of electrons, is shown to be that of the deeper trap P4 for all energies investigated. This study provides support for the use of 6 mol% and 2.3 mol% preform fibres for CT dosimetry, each with similar kinetic parameters
Electrical characterization of GO at different pH towards MCF7 and MCF10a: preliminary result
The intracellular pH of cancerous cell is commonly acidic while the intracellular pH of normal cell is neutral. The objective of this study is to study the electrical characterization in terms of resistance between the pH of sensing material with the intracellular pH of the cells. Three different pH of Graphene Oxide (GO) were used as a solvent to analyze their interaction towards breast cancer cells (MCF7) and breast normal cells (MCF10a). GO which produced by Hummer's method was used due to their solubility and biocompatibility characteristics which easily diffuse through the cell. In this experiment, the characteristics of GO were analyzed and confirmed by using Atomic Force Microscopy (AFM) and Fourier Transform Infrared spectroscopy (FTIR). In order to measure the resistance of MCF7 and MCF10a cells after treated with GO for 24 hours, gold electrodes with 10 μ-gaps of interdigitated electrodes (IDEs) were used. The results were obtained for three periods of time which were immediate, 5 minutes and 10 minutes after the treated cells being exposed at room temperature. The results show that the resistance of MCF10a cells increased after treated with higher pH of GO which is pH 7 and the resistances of the MCF7 cells decreased as the pH of GO increased to pH 7. Finally, the viable cells were calculated by using haemocytometer in order to prove that the increased of the resistances were due to the increased number of viable cells
A whole genome analyses of genetic variants in two Kelantan Malay individuals
The sequencing of two members of the Royal Kelantan Malay family genomes will provide insights on the Kelantan Malay whole genome sequences. The two Kelantan Malay genomes were analyzed for the SNP markers associated with thalassemia and Helicobacter pylori infection. Helicobacter pylori infection was reported to be low prevalence in the north-east as compared to the west coast of the Peninsular Malaysia and beta-thalassemia was known to be one of the most common inherited and genetic disorder in Malaysia.By combining SNP information from literatures, GWAS study and NCBI ClinVar, 18 unique SNPs were selected for further analysis. From these 18 SNPs, 10 SNPs came from previous study of Helicobacter pylori infection among Malay patients, 6 SNPs were from NCBI ClinVar and 2 SNPs from GWAS studies. The analysis reveals that both Royal Kelantan Malay genomes shared all the 10 SNPs identified by Maran (Single Nucleotide Polymorphims (SNPs) genotypic profiling of Malay patients with and without Helicobacter pylori infection in Kelantan, 2011) and one SNP from GWAS study. In addition, the analysis also reveals that both Royal Kelantan Malay genomes shared 3 SNP markers; HBG1 (rs1061234), HBB (rs1609812) and BCL11A (rs766432) where all three markers were associated with beta-thalassemia.Our findings suggest that the Royal Kelantan Malays carry the SNPs which are associated with protection to Helicobacter pylori infection. In addition they also carry SNPs which are associated with beta-thalassemia. These findings are in line with the findings by other researchers who conducted studies on thalassemia and Helicobacter pylori infection in the non-royal Malay population.Wan Khairunnisa Wan Juhari, Nur Aida Md Tamrin, Mohd Hanif Ridzuan Mat Daud, Hatin Wan Isa, Nurfazreen Mohd Nasir, Sathiya Maran, Nur Shafawati Abdul Rajab, Khairul Bariah Ahmad Amin Noordin, Nik Norliza Nik Hassan, Rick Tearle, Rozaimi Razali, Amir Feisal Merican and Bin Alwi Zilfali
CT Image Segmentation Using FEM with Optimized Boundary Condition
The authors propose a CT image segmentation method using structural analysis that is useful for objects with structural dynamic characteristics. Motivation of our research is from the area of genetic activity. In order to reveal the roles of genes, it is necessary to create mutant mice and measure differences among them by scanning their skeletons with an X-ray CT scanner. The CT image needs to be manually segmented into pieces of the bones. It is a very time consuming to manually segment many mutant mouse models in order to reveal the roles of genes. It is desirable to make this segmentation procedure automatic. Although numerous papers in the past have proposed segmentation techniques, no general segmentation method for skeletons of living creatures has been established. Against this background, the authors propose a segmentation method based on the concept of destruction analogy. To realize this concept, structural analysis is performed using the finite element method (FEM), as structurally weak areas can be expected to break under conditions of stress. The contribution of the method is its novelty, as no studies have so far used structural analysis for image segmentation. The method's implementation involves three steps. First, finite elements are created directly from the pixels of a CT image, and then candidates are also selected in areas where segmentation is thought to be appropriate. The second step involves destruction analogy to find a single candidate with high strain chosen as the segmentation target. The boundary conditions for FEM are also set automatically. Then, destruction analogy is implemented by replacing pixels with high strain as background ones, and this process is iterated until object is decomposed into two parts. Here, CT image segmentation is demonstrated using various types of CT imagery
- …