2,125 research outputs found
Landau singularities and singularities of holonomic integrals of the Ising class
We consider families of multiple and simple integrals of the ``Ising class''
and the linear ordinary differential equations with polynomial coefficients
they are solutions of. We compare the full set of singularities given by the
roots of the head polynomial of these linear ODE's and the subset of
singularities occurring in the integrals, with the singularities obtained from
the Landau conditions. For these Ising class integrals, we show that the Landau
conditions can be worked out, either to give the singularities of the
corresponding linear differential equation or the singularities occurring in
the integral. The singular behavior of these integrals is obtained in the
self-dual variable , with , where is the
usual Ising model coupling constant. Switching to the variable , we show
that the singularities of the analytic continuation of series expansions of
these integrals actually break the Kramers-Wannier duality. We revisit the
singular behavior (J. Phys. A {\bf 38} (2005) 9439-9474) of the third
contribution to the magnetic susceptibility of Ising model at the
points and show that is not singular at the
corresponding points inside the unit circle , while its analytical
continuation in the variable is actually singular at the corresponding
points oustside the unit circle ().Comment: 34 pages, 1 figur
Role of Nlrp6 and Nlrp12 in the maintenance of intestinal homeostasis
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102624/1/eji2871.pd
Complexity spectrum of some discrete dynamical systems
We first study birational mappings generated by the composition of the matrix
inversion and of a permutation of the entries of matrices. We
introduce a semi-numerical analysis which enables to compute the Arnold
complexities for all the possible birational transformations. These
complexities correspond to a spectrum of eighteen algebraic values. We then
drastically generalize these results, replacing permutations of the entries by
homogeneous polynomial transformations of the entries possibly depending on
many parameters. Again it is shown that the associated birational, or even
rational, transformations yield algebraic values for their complexities.Comment: 1 LaTex fil
Renormalization, isogenies and rational symmetries of differential equations
We give an example of infinite order rational transformation that leaves a
linear differential equation covariant. This example can be seen as a
non-trivial but still simple illustration of an exact representation of the
renormalization group.Comment: 36 page
Globally nilpotent differential operators and the square Ising model
We recall various multiple integrals related to the isotropic square Ising
model, and corresponding, respectively, to the n-particle contributions of the
magnetic susceptibility, to the (lattice) form factors, to the two-point
correlation functions and to their lambda-extensions. These integrals are
holonomic and even G-functions: they satisfy Fuchsian linear differential
equations with polynomial coefficients and have some arithmetic properties. We
recall the explicit forms, found in previous work, of these Fuchsian equations.
These differential operators are very selected Fuchsian linear differential
operators, and their remarkable properties have a deep geometrical origin: they
are all globally nilpotent, or, sometimes, even have zero p-curvature. Focusing
on the factorised parts of all these operators, we find out that the global
nilpotence of the factors corresponds to a set of selected structures of
algebraic geometry: elliptic curves, modular curves, and even a remarkable
weight-1 modular form emerging in the three-particle contribution
of the magnetic susceptibility of the square Ising model. In the case where we
do not have G-functions, but Hamburger functions (one irregular singularity at
0 or ) that correspond to the confluence of singularities in the
scaling limit, the p-curvature is also found to verify new structures
associated with simple deformations of the nilpotent property.Comment: 55 page
Le texte littéraire, passeur culturel et interculturel ? Discours d'enseignants et pratiques de classe dans une université algérienne.
Le présent article s\u27intéresse aux dynamiques interculturelles qui se manifestent dans les interactions "autour" d\u27un texte littéraire (un extrait du Figuier enchanté de Marco Micone), lors d\u27un cours de littérature dans une université algérienne.
Trois aspects retiennent plus particulièrement notre attention :
- quel est la place de cette dimension interculturelle dans la lecture du texte menée par l\u27enseignante ;
- quelles sont les modalités du dialogue entre soi et l’autre (les autres) qui se tisse dans cette lecture ;
- quels sont les tensions et les conflits nés de cette dynamique ?
L’étude de cette séquence met en évidence les dynamiques (inter) culturelles à l’œuvre lors de la lecture d’un texte littéraire, témoigne des potentialités de cette approche ; elle est aussi révélatrice des difficultés à mener à bien de manière pertinente cette démarche (inter) culturelle et de la concilier avec une lecture attentive du texte.
Poésie et musique : propositions pour la classe de langue
Cet article est consacré à à la poésie mise en musique, à la place et au rôle qu’il est possible de lui attribuer dans l’enseignement du français langue étrangère.
Après avoir rappelé brièvement quand et comment, dans l’histoire littéraire, la poésie a pu être accompagnée de musique et / ou mise en voix , nous nous plaçons sur le terrain de la pratique : quels poèmes en musique travailler dans la classe de FLE ? quelles activités mettre en œuvre ? à quelles fins
- …