5 research outputs found

    Multi stages toolpath optimisation of single point incremental forming process

    Get PDF
    Single point incremental forming (SPIF) is a flexible technology that can form a wide range of sheet metal products without the need for using punch and die sets. As a relatively cheap and die-less process, this technology is preferable for small and medium customised production. However, the SPIF technology has drawbacks, such as the geometrical inaccuracy and the thickness uniformity of the shaped part. This research aims to optimise the formed part geometric accuracy and reduce the processing time of a two-stage forming strategy of SPIF. Finite element analysis (FEA) was initially used and validated using experimental literature data. Furthermore, the design of experiments (DoE) statistical approach was used to optimise the proposed two-stage SPIF technique. Mass scaling technique was applied during the finite element analysis to minimise the computational time. The results showed that the step size during forming stage two have significantly affected the geometrical accuracy of the part, whereas the forming depth during stage one was insignificant to the part quality. It was also revealed that the geometrical improvement had taken place along the base and the wall regions. However, the areas near the clamp system showed minor improvements. The optimised two-stage strategy had successfully decreased both the geometrical inaccuracy and processing time. After optimisation, the average values of the geometrical deviation and forming time were reduced by 25% and 55.56%, respectively

    Multipoint forming using hole-type rubber punch

    Get PDF
    Reconfigurable multipoint forming is a flexible sheet forming technique aimed at customised sheet metal products. However, one drawback of multipoint forming is the cost and time needed to set up and align the upper and lower pin matrices. This study introduces an optimisation study of a novel hole-type rubber punch replacing the top pin matrix of multipoint incremental forming, aiming to reduce pins setting up and alignment complexity and time. Finite element modelling and design of experiments were used to in-vestigate the effect of hole-type rubber punch configuration such as hole size, hole type, and the compres-sion ratio on the wrinkling, thickness variation, and shape deviation. This research shows that the most significant process parameter in all responses was the hole size. The compression ratio of the material was found to be insignificant in wrinkling and shape deviation. The hole-type rubber punch parameters were found to be a hole size of 9 mm, circular hole type, and a compression ratio of 75%. This experimentally resulted in an improved parts wrinkling of 80%, when compared to using solid rubber punch, with the added benefits of reduction of the cost and time needed to set up and align the pin matrices

    Fabrication and optimisation of Ti-6Al-4V lattice-structured total shoulder implants using laser additive manufacturing

    No full text
    This work aimed to study one of the most important challenges in orthopaedic implantations, known as stress shielding of total shoulder implants. This problem arises from the elastic modulus mismatch between the implant and the surrounding tissue, and can result in bone resorption and implant loosening. This objective was addressed by designing and optimising a cellular-based lat-tice-structured implant to control the stiffness of a humeral implant stem used in shoulder implant applications. This study used a topology lattice-optimisation tool to create different cellular designs that filled the original design of a shoulder implant, and were further analysed using finite element analysis (FEA). A laser powder bed fusion technique was used to fabricate the Ti-6Al-4V test samples, and the obtained material properties were fed to the FEA model. The optimised cellular design was further fabricated using powder bed fusion, and a compression test was carried out to validate the FEA model. The yield strength, elastic modulus, and surface area/volume ratio of the optimised lattice structure, with a strut diameter of 1 mm, length of 5 mm, and 100% lattice percentage in the design space of the implant model were found to be 200 MPa, 5 GPa, and 3.71 mm−1, respectively. The obtained properties indicated that the proposed cellular structure can be effectively applied in total shoulder-replacement surgeries. Ultimately, this approach should lead to improvements in patient mobility, as well as to reducing the need for revision surgeries due to implant loosening
    corecore