231 research outputs found

    Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with stereo secchi

    Full text link
    We discuss how simultaneous observations by multiple heliospheric imagers can provide some important information about the azimuthal properties of Coronal Mass Ejections (CMEs) in the heliosphere. We propose two simple models of CME geometry that can be used to derive information about the azimuthal deflection and the azimuthal expansion of CMEs from SECCHI/HI observations. We apply these two models to four CMEs well-observed by both STEREO spacecraft during the year 2008. We find that in three cases, the joint STEREO-A and B observations are consistent with CMEs moving radially outward. In some cases, we are able to derive the azimuthal cross-section of the CME fronts, and we are able to measure the deviation from self-similar evolution. The results from this analysis show the importance of having multiple satellites dedicated to space weather forecasting, for example in orbits at the Lagrangian L4 and L5 points.Comment: 7 pages, 4 figures, 1 table, accepted to Ap

    Deriving the radial distances of wide coronal mass ejections from elongation measurements in the heliosphere - Application to CME-CME interaction

    Get PDF
    We present general considerations regarding the derivation of the radial distances of coronal mass ejections (CMEs) from elongation angle measurements such as those provided by SECCHI and SMEI, focusing on measurements in the Heliospheric Imager 2 (HI-2) field of view (i.e. past 0.3 AU). This study is based on a three-dimensional (3-D) magneto-hydrodynamics (MHD) simulation of two CMEs observed by SECCHI on January 24-27, 2007. Having a 3-D simulation with synthetic HI images, we are able to compare the two basic methods used to derive CME positions from elongation angles, the so-called "Point-P" and "Fixed-Phi" approximations. We confirm, following similar works, that both methods, while valid in the most inner heliosphere, yield increasingly large errors in HI-2 field of view for fast and wide CMEs. Using a simple model of a CME as an expanding self-similar sphere, we derive an analytical relationship between elongation angles and radial distances for wide CMEs. This relationship is simply the harmonic mean of the "Point-P" and "Fixed-Phi'' approximations and it is aimed at complementing 3-D fitting of CMEs by cone models or flux rope shapes. It proves better at getting the kinematics of the simulated CME right when we compare the results of our line-of-sights to the MHD simulation. Based on this approximation, we re-analyze the J-maps (time-elongation maps) in January 26-27, 2007 and present the first observational evidence that the merging of CMEs is associated with a momentum exchange from the faster ejection to the slower one due to the propagation of the shock wave associated with the fast eruption through the slow eruption.Comment: 10 pages, 4 figures, accepted in Annales Geophysicae (Special Issue: Three eyes on the Sun - multi-spacecraft studies of the corona and impacts on the heliosphere

    Accuracy and Limitations of Fitting and Stereoscopic Methods to Determine the Direction of Coronal Mass Ejections from Heliospheric Imagers Observations

    Full text link
    Using data from the Heliospheric Imagers (HIs) onboard STEREO, it is possible to derive the direction of propagation of coronal mass ejections (CMEs) in addition to their speed with a variety of methods. For CMEs observed by both STEREO spacecraft, it is possible to derive their direction using simultaneous observations from the twin spacecraft and also, using observations from only one spacecraft with fitting methods. This makes it possible to test and compare different analyses techniques. In this article, we propose a new fitting method based on observations from one spacecraft, which we compare to the commonly used fitting method of Sheeley et al. (1999). We also compare the results from these two fitting methods with those from two stereoscopic methods, focusing on 12 CMEs observed simultaneously by the two STEREO spacecraft in 2008 and 2009. We find evidence that the fitting method of Sheeley et al. (1999) can result in significant errors in the determination of the CME direction when the CME propagates outside of 60deg \pm 20 deg from the Sun-spacecraft line. We expect our new fitting method to be better adapted to the analysis of halo or limb CMEs with respect to the observing spacecraft. We also find some evidence that direct triangulation in the HI fields-of-view should only be applied to CMEs propagating approximatively towards Earth (\pm 20deg from the Sun-Earth line). Last, we address one of the possible sources of errors of fitting methods: the assumption of radial propagation. Using stereoscopic methods, we find that at least seven of the 12 studied CMEs had an heliospheric deflection of less than 20deg as they propagated in the HI fields-of-view, which, we believe, validates this approximation.Comment: 17 pages, 6 figures, 2 tables, accepted to Solar Physic

    Solar-Terrestrial Simulations of CMEs with a Realistic Initiation Mechanism: Case Study for Active Region 10069

    Full text link
    Most simulations of coronal mass ejections (CMEs) to date either focus on the interplanetary propagation of a giant plasma "blob" without paying too much attention to its origin and to the formation process or they focus on the complex evolution of the coronal magnetic field due to (sub-)photospheric motions which result in an eruption. Here, we present global simulations of CMEs where coronal motions are used to produce a realistic evolution of the coronal magnetic field and cause an eruption. We focus on active region 10069, which produced a number of eruptions in late August 2002, including the August 24, 2002 CME - a fast (~2000 km/s) eruption originating from W81-, as well as a slower eruption on August 22, 2002 (originating from W62). Using a three-dimensional magneto-hydrodynamic (MHD) simulation of these ejections with the Space Weather Modeling Framework (SWMF), we show how a realistic initiation mechanism enables us to study the deflection of the CME in the corona and in the heliosphere. Reconnection of the erupting magnetic field with that of neighboring streamers and active regions modify the solar connectivity of the field lines connecting to Earth and change the expected solar energetic particle fluxes. Comparing the results at 1 AU of our simulations with in situ observations by the ACE spacecraft, we propose an alternate solar origin for the shock wave observed at L1 on August 26.Comment: 4 pages, 2 figures, refereed proceedings for Solar Wind 1

    Effect of Solar Wind Drag on the Determination of the Properties of Coronal Mass Ejections from Heliospheric Images

    Full text link
    The Fixed-\Phi (F\Phi) and Harmonic Mean (HM) fitting methods are two methods to determine the average direction and velocity of coronal mass ejections (CMEs) from time-elongation tracks produced by Heliospheric Imagers (HIs), such as the HIs onboard the STEREO spacecraft. Both methods assume a constant velocity in their descriptions of the time-elongation profiles of CMEs, which are used to fit the observed time-elongation data. Here, we analyze the effect of aerodynamic drag on CMEs propagating through interplanetary space, and how this drag affects the result of the F\Phi and HM fitting methods. A simple drag model is used to analytically construct time-elongation profiles which are then fitted with the two methods. It is found that higher angles and velocities give rise to greater error in both methods, reaching errors in the direction of propagation of up to 15 deg and 30 deg for the F\Phi and HM fitting methods, respectively. This is due to the physical accelerations of the CMEs being interpreted as geometrical accelerations by the fitting methods. Because of the geometrical definition of the HM fitting method, it is affected by the acceleration more greatly than the F\Phi fitting method. Overall, we find that both techniques overestimate the initial (and final) velocity and direction for fast CMEs propagating beyond 90 deg from the Sun-spacecraft line, meaning that arrival times at 1 AU would be predicted early (by up to 12 hours). We also find that the direction and arrival time of a wide and decelerating CME can be better reproduced by the F\Phi due to the cancellation of two errors: neglecting the CME width and neglecting the CME deceleration. Overall, the inaccuracies of the two fitting methods are expected to play an important role in the prediction of CME hit and arrival times as we head towards solar maximum and the STEREO spacecraft further move behind the Sun.Comment: Solar Physics, Online First, 17 page

    Numerical Investigation of a Coronal Mass Ejection from an Anemone Active Region: Reconnection and Deflection of the 2005 August 22 Eruption

    Full text link
    We present a numerical investigation of the coronal evolution of a coronal mass ejection (CME) on 2005 August 22 using a 3-D thermodynamics magnetohydrodynamic model, the SWMF. The source region of the eruption was anemone active region (AR) 10798, which emerged inside a coronal hole. We validate our modeled corona by producing synthetic extreme ultraviolet (EUV) images, which we compare to EIT images. We initiate the CME with an out-of-equilibrium flux rope with an orientation and chirality chosen in agreement with observations of a H-alpha filament. During the eruption, one footpoint of the flux rope reconnects with streamer magnetic field lines and with open field lines from the adjacent coronal hole. It yields an eruption which has a mix of closed and open twisted field lines due to interchange reconnection and only one footpoint line-tied to the source region. Even with the large-scale reconnection, we find no evidence of strong rotation of the CME as it propagates. We study the CME deflection and find that the effect of the Lorentz force is a deflection of the CME by about 3 deg/Rsun towards the East during the first 30 minutes of the propagation. We also produce coronagraphic and EUV images of the CME, which we compare with real images, identifying a dimming region associated with the reconnection process. We discuss the implication of our results for the arrival at Earth of CMEs originating from the limb and for models to explain the presence of open field lines in magnetic clouds.Comment: 14 pages, 8 Figures, accepted to Astrophysical Journa

    Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections

    Full text link
    We present a method for tracking and predicting the propagation and evolution of coronal mass ejections (CMEs) using the imagers on the STEREO and SOHO satellites. By empirically modeling the material between the inner core and leading edge of a CME as an expanding, outward propagating ellipsoid, we track its evolution in three-dimensional space. Though more complex empirical CME models have been developed, we examine the accuracy of this relatively simple geometric model, which incorporates relatively few physical assumptions, including i) a constant propagation angle and ii) an azimuthally symmetric structure. Testing our ellipsoid model developed herein on three separate CMEs, we find that it is an effective tool for predicting the arrival of density enhancements and the duration of each event near 1 AU. For each CME studied, the trends in the trajectory, as well as the radial and transverse expansion are studied from 0 to ~.3 AU to create predictions at 1 AU with an average accuracy of 2.9 hours.Comment: 18 pages, 11 figure

    The Brightness of Density Structures at Large Solar Elongation Angles: What is Being Observed by STEREO/SECCHI?

    Full text link
    We discuss features of coronal mass ejections (CMEs) that are specific to heliospheric observations at large elongation angles. Our analysis is focused on a series of two eruptions that occurred on 2007 January 24-25, which were tracked by the Heliospheric Imagers (HIs) onboard STEREO. Using a three-dimensional (3-D) magneto-hydrodynamic simulation of these ejections with the Space Weather Modeling Framework (SWMF), we illustrate how the combination of the 3-D nature of CMEs, solar rotation, and geometry associated with the Thomson sphere results in complex effects in the brightness observed by the HIs. Our results demonstrate that these effects make any in-depth analysis of CME observations without 3-D simulations challenging. In particular, the association of bright features seen by the HIs with fronts of CME-driven shocks is far from trivial. In this Letter, we argue that, on 2007 January 26, the HIs observed not only two CMEs, but also a dense corotating stream compressed by the CME-driven shocks.Comment: 5 pages, 2 figures, accepted for ApJ Lette
    • …
    corecore