217 research outputs found
Good Learning and Implicit Model Enumeration
MathSBML is an open-source, freely-downloadable Mathematica package that facilitates working with Systems Biology Markup Language (SBML) models. SBML is a toolneutral,computer-readable format for representing models of biochemical reaction networks, applicable to metabolic networks, cell-signaling pathways, genomic regulatory networks, and other modeling problems in systems biology that is widely supported by the systems biology community. SBML is based on XML, a standard medium for representing and transporting data that is widely supported on the internet as well as in computational biology and bioinformatics. Because SBML is tool-independent, it enables model transportability, reuse, publication and survival. In addition to MathSBML, a number of other tools that support SBML model examination and manipulation are provided on the sbml.org website, including libSBML, a C/C++ library for reading SBML models; an SBML Toolbox for MatLab; file conversion programs; an SBML model validator and visualizer; and SBML specifications and schemas. MathSBML enables SBML file import to and export from Mathematica as well as providing an API for model manipulation and simulation
The Input Signal Step Function (ISSF), a Standard Method to Encode Input Signals in SBML Models with Software Support, Applied to Circadian Clock Models
LetterThis is the final version of the article. Available from SAGE Publications via the DOI in this record.Time-dependent light input is an important feature of computational models of the circadian clock. However, publicly available models encoded in standard representations such as the Systems Biology Markup Language (SBML) either do not encode this input or use different mechanisms to do so, which hinders reproducibility of published results as well as model reuse. The authors describe here a numerically continuous function suitable for use in SBML for models of circadian rhythms forced by periodic light-dark cycles. The Input Signal Step Function (ISSF) is broadly applicable to encoding experimental manipulations, such as drug treatments, temperature changes, or inducible transgene expression, which may be transient, periodic, or mixed. It is highly configurable and is able to reproduce a wide range of waveforms. The authors have implemented this function in SBML and demonstrated its ability to modify the behavior of publicly available models to accurately reproduce published results. The implementation of ISSF allows standard simulation software to reproduce specialized circadian protocols, such as the phase-response curve. To facilitate the reuse of this function in public models, the authors have developed software to configure its behavior without any specialist knowledge of SBML. A community-standard approach to represent the inputs that entrain circadian clock models could particularly facilitate research in chronobiology.K.S. was supported by the UK BBSRC grant BB/E015263/1. SynthSys Edinburgh is a Centre for Integrative Systems Biology (CISB) funded by BBSRC and EPSRC, reference BB/D019621/1
Software that goes with the flow in systems biology
A recent article in BMC Bioinformatics describes new advances in workflow systems for computational modeling in systems biology. Such systems can accelerate, and improve the consistency of, modeling through automation not only at the simulation and results-production stages, but also at the model-generation stage. Their work is a harbinger of the next generation of more powerful software for systems biologists
The systems biology format converter
BACKGROUND: Interoperability between formats is a recurring problem in systems biology research. Many tools have been developed to convert computational models from one format to another. However, they have been developed independently, resulting in redundancy of efforts and lack of synergy. RESULTS: Here we present the System Biology Format Converter (SBFC), which provide a generic framework to potentially convert any format into another. The framework currently includes several converters translating between the following formats: SBML, BioPAX, SBGN-ML, Matlab, Octave, XPP, GPML, Dot, MDL and APM. This software is written in Java and can be used as a standalone executable or web service. CONCLUSIONS: The SBFC framework is an evolving software project. Existing converters can be used and improved, and new converters can be easily added, making SBFC useful to both modellers and developers. The source code and documentation of the framework are freely available from the project web site. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1000-2) contains supplementary material, which is available to authorized users
Specifications of Standards in Systems and Synthetic Biology: Status and Developments in 2016
Standards are essential to the advancement of science and technology. In systems and synthetic biology, numerous standards and associated tools have been developed over the last 16 years. This special issue of the Journal of Integrative Bioinformatics aims to support the exchange, distribution and archiving of these standards, as well as to provide centralised and easily citable access to them
Incremental Grid-like Layout Using Soft and Hard Constraints
We explore various techniques to incorporate grid-like layout conventions
into a force-directed, constraint-based graph layout framework. In doing so we
are able to provide high-quality layout---with predominantly axis-aligned
edges---that is more flexible than previous grid-like layout methods and which
can capture layout conventions in notations such as SBGN (Systems Biology
Graphical Notation). Furthermore, the layout is easily able to respect
user-defined constraints and adapt to interaction in online systems and diagram
editors such as Dunnart.Comment: Accepted to Graph Drawing 201
Primique: automatic design of specific PCR primers for each sequence in a family
<p>Abstract</p> <p>Background</p> <p>In many contexts, researchers need specific primers for all sequences in a family such that each primer set amplifies only its target sequence and none of the others, e.g. to detect which transcription factor out of a family of very similar proteins that is present in a sample, or to design diagnostic assays for the identification of pathogen strains.</p> <p>Results</p> <p>This paper presents primique, a new graphical, user-friendly, fast, web-based tool which solves the problem: It designs specific primers for each sequence in an uploaded set. Further, a secondary set of sequences <it>not </it>to be amplified by any primer pair may be uploaded. Primers with high sequence similarity to non-target sequences are selected against. Lastly, the suggested primers may be checked against the National Center for Biotechnology Information databases for possible mis-priming.</p> <p>Conclusion</p> <p>Results are presented in interactive tables, and various primer properties are listed and displayed graphically. Any close match alignments can be displayed. Given 30 sequences, the running time of primique is about 20 seconds.</p> <p>primique can be reached via this web address: <url>http://cgi-www.daimi.au.dk/cgi-chili/primique/front.py</url></p
Ranked retrieval of Computational Biology models
<p>Abstract</p> <p>Background</p> <p>The study of biological systems demands computational support. If targeting a biological problem, the reuse of existing computational models can save time and effort. Deciding for potentially suitable models, however, becomes more challenging with the increasing number of computational models available, and even more when considering the models' growing complexity. Firstly, among a set of potential model candidates it is difficult to decide for the model that best suits ones needs. Secondly, it is hard to grasp the nature of an unknown model listed in a search result set, and to judge how well it fits for the particular problem one has in mind.</p> <p>Results</p> <p>Here we present an improved search approach for computational models of biological processes. It is based on existing retrieval and ranking methods from Information Retrieval. The approach incorporates annotations suggested by MIRIAM, and additional meta-information. It is now part of the search engine of BioModels Database, a standard repository for computational models.</p> <p>Conclusions</p> <p>The introduced concept and implementation are, to our knowledge, the first application of Information Retrieval techniques on model search in Computational Systems Biology. Using the example of BioModels Database, it was shown that the approach is feasible and extends the current possibilities to search for relevant models. The advantages of our system over existing solutions are that we incorporate a rich set of meta-information, and that we provide the user with a relevance ranking of the models found for a query. Better search capabilities in model databases are expected to have a positive effect on the reuse of existing models.</p
CytoSolve: A Scalable Computational Method for Dynamic Integration of Multiple Molecular Pathway Models
A grand challenge of computational systems biology is to create a molecular pathway model of the whole cell. Current approaches involve merging smaller molecular pathway models’ source codes to create a large monolithic model (computer program) that runs on a single computer. Such a larger model is difficult, if not impossible, to maintain given ongoing updates to the source codes of the smaller models. This paper describes a new system called CytoSolve that dynamically integrates computations of smaller models that can run in parallel across different machines without the need to merge the source codes of the individual models. This approach is demonstrated on the classic Epidermal Growth Factor Receptor (EGFR) model of Kholodenko. The EGFR model is split into four smaller models and each smaller model is distributed on a different machine. Results from four smaller models are dynamically integrated to generate identical results to the monolithic EGFR model running on a single machine. The overhead for parallel and dynamic computation is approximately twice that of a monolithic model running on a single machine. The CytoSolve approach provides a scalable method since smaller models may reside on any computer worldwide, where the source code of each model can be independently maintained and updated
Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes
<p>Abstract</p> <p>Background</p> <p>Most cellular signal transduction mechanisms depend on a few molecular partners whose roles depend on their position and movement in relation to the input signal. This movement can follow various rules and take place in different compartments. Additionally, the molecules can form transient complexes. Complexation and signal transduction depend on the specific states partners and complexes adopt. Several spatial simulator have been developed to date, but none are able to model reaction-diffusion of realistic multi-state transient complexes.</p> <p>Results</p> <p><it>Meredys </it>allows for the simulation of multi-component, multi-feature state molecular species in two and three dimensions. Several compartments can be defined with different diffusion and boundary properties. The software employs a Brownian dynamics engine to simulate reaction-diffusion systems at the reactive particle level, based on compartment properties, complex structure, and hydro-dynamic radii. Zeroth-, first-, and second order reactions are supported. The molecular complexes have realistic geometries. Reactive species can contain user-defined feature states which can modify reaction rates and outcome. Models are defined in a versatile NeuroML input file. The simulation volume can be split in subvolumes to speed up run-time.</p> <p>Conclusions</p> <p><it>Meredys </it>provides a powerful and versatile way to run accurate simulations of molecular and sub-cellular systems, that complement existing multi-agent simulation systems. <it>Meredys </it>is a Free Software and the source code is available at <url>http://meredys.sourceforge.net/</url>.</p
- …