3,538 research outputs found
Interactions and star formation activity in Wolf-Rayet galaxies
We present the main results of the PhD Thesis carried out by
L\'opez-S\'anchez (2006), in which a detailed morphological, photometrical and
spectroscopical analysis of a sample of 20 Wolf-Rayet (WR) galaxies was
realized. The main aims are the study of the star formation and O and WR
stellar populations in these galaxies and the role that interactions between
low surface companion objects have in the triggering of the bursts. We analyze
the morphology, stellar populations, physical conditions, chemical abundances
and kinematics of the ionized gas, as well as the star-formation activity of
each system.Comment: 16 pages, 15 figure
The intriguing HI gas in NGC 5253: an infall of a diffuse, low-metallicity HI cloud?
(Abridged) We present new, deep HI line and 20-cm radio continuum data of the
very puzzling blue compact dwarf galaxy NGC 5253, obtained with the ATCA as
part of the `Local Volume HI Survey' (LVHIS). Our low-resolution HI maps show
the disturbed HI morphology that NGC 5253 possesses, including tails, plumes
and detached HI clouds. The high-resolution map reveals an HI plume at the SE
and an HI structure at the NW that surrounds an Ha shell. We confirm that the
kinematics of the neutral gas are highly perturbed and do not follow a rotation
pattern. We discuss the outflow and infall scenarios to explain such disturbed
kinematics, analyze the environment in which it resides, and compare it
properties with those observed in similar star-forming dwarf galaxies. The
radio-continuum emission of NGC 5253 is resolved and associated with the
intense star-forming region at the center of the galaxy. We complete the
analysis using multiwavelength data extracted from the literature. We estimate
the SFR using this multiwavelength approach. NGC 5253 does not satisfy the
Schmidt-Kennicutt law of star-formation, has a very low HI mass-to-light ratio
when comparing with its stellar mass, and seems to be slightly metal-deficient
in comparison with starbursts of similar baryonic mass. Taking into account all
available multiwavelength data, we conclude that NGC 5253 is probably
experiencing the infall of a diffuse, low-metallicity HI cloud along the minor
axis of the galaxy, which is comprising the ISM and triggering the powerful
starburst. The tidally disturbed material observed at the east and north of the
galaxy is a consequence of this interaction, which probably started more than
100 Myr ago. The origin of this HI cloud may be related with a strong
interaction between NGC 5253 and the late-type spiral galaxy M 83 in the past.Comment: 19 pages, 12 figures, accepted for publication in MNRA
Influence of climate change on the flowering of temperate fruit trees
It is well known that winter chilling is necessary for the flowering of temperate trees. The chilling requirement is a criterion for choosing a species or variety at a given location. Also chemistry products can be used for reducing the chilling-hours needs but make our production more expensive. This study first analysed the observed values of chilling hours for some representative agricultural locations in Spain for the last three decades and their projected changes under climate change scenarios. Usually the chilling is measured and calculated as chilling-hours, and different methods have been used to calculate them (e.g. Richarson et al., 1974 among others) according to the species considered. For our objective North Carolina method (Shaltout and Unrath, 1983) was applied for apples, Utah method (Richardson et al. 1974) for peach and grapevine and the approach used by De Melo-Abreu et al. (2004) for olive trees. The influence of climate change in temperate trees was studied by calculating projections of chilling-hours with climate data from Regional Climate Models (RCMs) at high resolution (25 km) from the European Project ENSEMBLES (http://www.ensembles-eu.org/). These projections will allow for analysing the modelled variations of chill-hours between 2nd half of 20C and 1st half of 21C at the study locations
Detection of Fe I and Fe II in the atmosphere of MASCARA-2b using a cross-correlation method
Ultra-hot Jupiters are gas giants planets whose dayside temperature, due to
the strong irradiation received from the host star, is greater than 2200 K.
These kind of objects are perfect laboratories to study chemistry of
exoplanetary upper atmospheres via transmission spectroscopy. Exo-atmospheric
absorption features are buried in the noise of the in-transit residual spectra.
However we can retrieve the information of hundreds of atmospheric absorption
lines by performing a cross-correlation with an atmospheric transmission model,
which allows us to greatly increase the exo-atmospheric signal. At the
high-spectral resolution of our data, the Rossiter-McLaughlin effect and
centre-to-limb variation have a strong contribution. Here, we present the first
detection of Fe I and the confirmation of absorption features of Fe II in the
atmosphere of the ultra-hot Jupiter MASCARA-2b/KELT-20b, by using three transit
observations with HARPS-N. After combining all transit observations we find a
high cross-correlation signal of Fe I and Fe II with signal-to-noise ratios of
10.5 +/- 0.4 and 8.6 +/- 0.5, respectively. The peak absorption for both
species appear to be blue-shifted with velocities of -6.3 +/- 0.8 km/s for Fe I
and -2.8 +/- 0.8 km/s for Fe II, suggesting the presence of winds from the day-
to night-side of the planet's atmosphere. These results confirm previous
studies of this planet and add a new atomic species (Fe I) to the long list of
detected species in the atmosphere of MASCARA-2b, making it, together with
KELT-9b, the most feature-rich ultra-hot Jupiter to date.Comment: 10 pages, 7 figure
The cosmic evolution of the spatially-resolved star formation rate and stellar mass of the CALIFA survey
We investigate the cosmic evolution of the absolute and specific star
formation rate (SFR, sSFR) of galaxies as derived from a spatially-resolved
study of the stellar populations in a set of 366 nearby galaxies from the
CALIFA survey. The analysis combines GALEX and SDSS images with the 4000 break,
H_beta, and [MgFe] indices measured from the datacubes, to constrain parametric
models for the SFH, which are then used to study the cosmic evolution of the
star formation rate density (SFRD), the sSFR, the main sequence of star
formation (MSSF), and the stellar mass density (SMD). A delayed-tau model,
provides the best results, in good agreement with those obtained from
cosmological surveys. Our main results from this model are: a) The time since
the onset of the star formation is larger in the inner regions than in the
outer ones, while tau is similar or smaller in the inner than in the outer
regions. b) The sSFR declines rapidly as the Universe evolves, and faster for
early than for late type galaxies, and for the inner than for the outer regions
of galaxies. c) SFRD and SMD agree well with results from cosmological surveys.
At z< 0.5, most star formation takes place in the outer regions of late spiral
galaxies, while at z>2 the inner regions of the progenitors of the current E
and S0 are the major contributors to SFRD. d) The inner regions of galaxies are
the major contributor to SMD at z> 0.5, growing their mass faster than the
outer regions, with a lookback time at 50% SMD of 9 and 6 Gyr for the inner and
outer regions. e) The MSSF follows a power-law at high redshift, with the slope
evolving with time, but always being sub-linear. f) In agreement with galaxy
surveys at different redshifts, the average SFH of CALIFA galaxies indicates
that galaxies grow their mass mainly in a mode that is well represented by a
delayed-tau model, with the peak at z~2 and an e-folding time of 3.9 Gyr.Comment: 23 pages, 16 figures, 6 tables, accepted for publication in Astronomy
& Astrophysics. *Abridged abstract
Vortex breakdown in a water-spout flow
The numerical study of the steady axisymmetric air-water flow in a vertical sealed cylinder, driven by the rotating top disk, describes topological transformations as the rotation intensifies. The air meridional flow (AMF) and swirl induce meridional motions of opposite directions in water. For slow (fast) rotation, the effect of AMF (swirl) dominates. For very fast rotation, large-scale regions of clockwise meridional circulation in air and water are separated by a thin layer of anticlockwise circulation adjacent to the interface in water. This pattern develops for other fluids as well. Physical reasoning behind the flow evolution is provided
Objective Amplitude of Accommodation Computed from Optical Quality Metrics Applied to Wavefront Outcomes
AbstractPurposeWe studied the accuracy and precision of 32 objective wavefront methods for finding the amplitude of accommodation obtained in 180 eyes.MethodsOcular accommodation was stimulated with 0.5 D steps in target vergence spanning the full range of accommodation for each subject. Subjective monocular amplitude of accommodation was measured using two clinical methods, using negative lenses and with a custom Badal optometer.ResultsBoth subjective methods gave similar results. Results obtained from the Badal optometer where used to test the accuracy of the objective methods. All objective methods showed lower amplitude of accommodation that the subjective ones by an amount that varied from 0.2 to 1.1 D depending on the method. The precision in this prediction also varied between subjects, with an average standard error of the mean of 0.1 D that decreased with age.ConclusionsDepth of field increases subjective of amplitude of accommodation overestimating the objective amplitude obtained with all the metrics used. The change in the negative direction of spherical aberration during accommodation increases the amplitude of accommodation by an amount that varies with age
- …