7 research outputs found

    Resultant-based methods for plane curves intersection problems

    Get PDF
    http://www.springeronline.com/3-540-28966-6We present an algorithm for solving polynomial equations, which uses generalized eigenvalues and eigenvectors of resultant matrices. We give special attention to the case of two bivariate polynomials and the Sylvester or Bezout resultant constructions. We propose a new method to treat multiple roots, detail its numerical aspects and describe experiments on tangential problems, which show the efficiency of the approach. An industrial application of the method is presented at the end of the paper. It consists in recovering cylinders from a large cloud of points and requires intensive resolution of polynomial equations

    Computing the common zeros of two bivariate functions via BĂ©zout resultants

    Get PDF
    The common zeros of two bivariate functions can be computed by finding the common zeros of their polynomial interpolants expressed in a tensor Chebyshev basis. From here we develop a bivariate rootfinding algorithm based on the hidden variable resultant method and Bézout matrices with polynomial entries. Using techniques including domain subdivision, Bézoutian regularization, and local refinement we are able to reliably and accurately compute the simple common zeros of two smooth functions with polynomial interpolants of very high degree (≥ 1000). We analyze the resultant method and its conditioning by noting that the Bézout matrices are matrix polynomials. Two implementations are available: one on the Matlab Central File Exchange and another in the roots command in Chebfun2 that is adapted to suit Chebfun’s methodology

    Bezoutian operator vessels in Banach space

    Full text link

    Theory of commuting nonselfadjoint operators

    Full text link
    corecore