916 research outputs found
Recommended from our members
Calculation of clearances in twin screw compressors
Clearances between rotating and stationary parts in a screw compressor are set to ensure the efficient operation and allow for thermal deformation without unwanted contacts. The change in clearances is caused by both pressure and temperature changes within the machine. If clearances are too large, the increased leakage flows will reduce efficiency. However, if the nominal clearances are too small, contacts between the rotating and stationary parts can occur as a consequence of rotor and casing deformations. In order to determine the operational clearances, a numerical analysis of deformation of screw compressor rotors and casing has to be performed. This paper discusses how the temperature of rotor and casing surfaces calculated from the one-dimensional chamber model in the SCORG could be used as a boundary conditions for a steady state thermal and structural analysis of a screw compressor solid parts. Deformations of rotors and casing under temperature load were calculated using a commercial Finite Element Analysis code ANSYS. Operational clearance are estimated from these deformations and some recommendations for further work are proposed
Recommended from our members
Improving Screw Compressor Displacement and Efficiency by Increasing the Rotor Profile Depth
Recommended from our members
Development and Design of Energy Efficient Oil-Flooded Screw Compressors
It is estimated that about 17% of the world's generated power is used for compression. Thus all, even minor improvement of the efficiency of compressors will substantially reduce CO2 emission. This paper presents development of family of energy efficient oil-flooded screw compressors for Kirloskar Pneumatic Company Ltd. The developmental techniques adopted to improve efficiency such as introduction of superior 'N' rotor profile, rotor clearance management, performance calculation using 3D CCM (Computational Continuum Mechanics), direct parametric interface to CAD (Computer Aided Design), which contains bearing selection for complete 3D solid modelling. Also, contemporary prototyping and experimental investigation is supported by the fully computerised data acquisition and processing. The cumulative improvement of all these elements of the design process resulted in a very efficient machine which guarantees the competitive position of Kirloskar Pneumatic Company Limited in the screw compressor market
Spectral monitoring of AGNs: Preliminary results for Ark 564 and Arp 102B
We present preliminary results of the long term spectral monitoring of two
active galactic nuclei with different broad line shapes: Ark 564 and Arp 102B.
Ark 564 is a bright nearby narrow line Syfert 1 (NLS1) galaxy with relatively
narrow permitted optical emission lines and a high FeII/H ratio, while
Arp 102B is a nearby broad-line radio galaxy with broad double-peaked Balmer
emission lines. The spectra of Ark 564 were observed during 11-year period
(1999-2009) and the spectra of Arp 102B in the 12-year period (1998-2009), with
SAO 6-m and 1-m telescopes (Russia) and the GHAO 2.1-m telescope (Cananea,
Mexico).Comment: Presented on "8th Serbian Conference on Spectral Line Shapes in
Astrophysics". In revised version minor changes in the tex
Recommended from our members
User defined nodal displacement of numerical mesh for analysis of screw machines in FLUENT
Growing demands to reduce energy consumption are driving researchers towards in-depth analysis of positive displacement machines. Twin screw compressors are amongst the most common types of positive displacement machines. These machines have inherently complex geometry due to intricate rotor profiles used. As the details of the internal flows are difficult to obtain experimentally, Computational Fluid Dynamics (CFD) offers a good alternative for evaluation of internal flow patterns. However, implementation of CFD is challenging due complex deforming geometries. In this paper, a customised grid generator SCORGTM developed by authors is used to generate numerical meshes for commercially available solver ANSYS FLUENT. FLUENT is an unstructured solver which offers flexibility of using both segregated and coupled solution algorithms. Segregated algorithms are generally faster which results in shorter product development time. Interface with FLUENT is implemented by performing User Defined Nodal Displacements (UDND) of grids generated by SCORG in a parallel framework. For this purpose, SCORG and UDND are coupled and extended to work with FLUENT's parallel architecture. The developed code is compiled within the solver. The oil free air screw compressor with 'N' profile rotors and 3/5 lobe combination is modelled for 8000 RPM and 6000 RPM. Finally, the predicted performance values with FLUENT are compared to previously calculated CFX predictions and experimental results. FLUENT requires shorter solution time to obtain same accuracy of CFX
ESTIMATION OF EXTERNAL COSTS OF ELECTRICITY GENERATION USING EXTERNE MODEL
The external costs of electricity generation can be characterised by the resulting social and environmental impacts. The most significant impacts are the air pollutions impact on health, built in environment, crops, forests, agricultural areas and on global warming. The primary impact considered is the air pollution’s effect on human health. The monetised value of the health impact, the external costs are calculated for two regional coal power plants, the effects are examined on the EU level with the ExternE methodology.External costs, human health, monetized environmental impacts, energy production, coal power plants, air pollution, Environmental Economics and Policy, Health Economics and Policy, Research Methods/ Statistical Methods,
Recommended from our members
Fluid Machine - Bearing Inserts
The present disclosure relates to fluid machines, especially compressors, more especially screw compressors. More particularly the present disclosure describes a fluid machine comprising at least one rotor, the rotor including a rotor drive shaft extending from the rotor, a housing in which is mounted the rotor, and at least one bearing insert which mounts around the rotor drive shaft at a first end of the rotor and which includes at least one bearing within it and attaches to the housing. The present disclosure also describes bearing inserts suitable for use on such fluid machines
Recommended from our members
CFD Analysis of Oil Flooded Twin Screw Compressors
Modelling of screw compressors using Computational Fluid Dynamics (CFD) offers better insight into the working chamber of twin screw machines when compared with chamber models. As shown by authors in earlier publications, CFD models predict performance of dry gas and refrigeration compressors fairly accurately. However numerical flow models used for modelling of oil flooded twin screw compressors are still at the development stage. This is mainly due to the lack of understanding of the flow complexity and the techniques used for solving coupled equations that represent interactions between the gas and the oil in such machines. This paper presents the modelling approach used for calculation of the performance of an oil flooded screw compressor. It requires a structured numerical mesh which can represent all moving parts of the compressor in a single numerical domain. Such mesh is generated by SCORGTM using novel boundary distribution technique called casing-to-rotor conformal boundary mapping. A test oil injected twin screw compressor with rotor configuration 4/5 and 127 mm main rotor diameter was measured in the compressor rig of the Centre for Compressor Technology at City University London. Measurements of the chamber pressure history and integral parameters of the compressor such as mass flow rate of gas and oil, indicated power and temperatures are used for the comparison with CFD results. The analysis showed a close match in the prediction of the mass flow rates of gas. The indicated power obtained by CFD predictions matched well with the measured shaft power. The model provided an exceptional visualization of the interaction of gas and oil inside the compression chamber. The mixing of the phases, distribution of oil, heat transfer between gas and oil and also effects on sealing due to high oil concentration in leakage gaps were well captured
Recommended from our members
Analysis of rolling bearing power loss models for twin screw oil injected compressor
The mechanical losses inside a screw compressor limit the performance of the compressor in terms of efficiency. These losses arise due to relative motion between elements inside the screw compressor. The estimation of mechanical losses predicted in the literature is around 10-15% of the total shaft power. One of the elements which contribute significantly to these losses is rolling element bearings. There are numerous mathematical models available which predict power losses in the rolling bearings. The objective of this paper is to study different models to predict power loss for rolling bearings and to predict the power losses for the bearings used for oil injected, twin screw compressor. A comparison between different power loss models for different operating conditions of compressor is also presented in this paper and results of analysis are compared with available experimental observations. The analysis helps to determine suitable power loss model for different operating conditions and more realistic predictions of the power losses. This allows designers for more accurate estimation of the performance of screw compressors
Recommended from our members
Normal Rack Grid Generation Method for Screw Machines with Large Helix Angles
Improving the efficiency of the screw machine is highly significant for industry. Numerical simulation is an important tool in developing these machines. The 3D computational fluid dynamic simulation can give a valuable insight into the flow parameters of screw machines. However, it is currently difficult to generate high quality computational grids required for screw rotors with large helix angle. This is mainly due to the excessively high cell skewness of the rotors with large helix angel, which would introduce errors in numerical simulation. This paper presents a novel grid generation algorithm used for the screw rotors with large helix angel. This method is based on the principles developed for the grid generation in transverse cross-section. Such mesh is generated by SCORGTM using normal rack grid generation method which means numerical meshes are generated in a plane normal to the pitch helix line. The mesh lines are then parallel to the helix line and thus an orthogonal mesh will be produced. The main flow and leakage flow directions are orthogonal to the mesh, potentially reducing numerical diffusion. This developed algorithm could also be employed for single screw machines
- …