159 research outputs found

    MaaSim: A Liveability Simulation for Improving the Quality of Life in Cities

    Get PDF
    Urbanism is no longer planned on paper thanks to powerful models and 3D simulation platforms. However, current work is not open to the public and lacks an optimisation agent that could help in decision making. This paper describes the creation of an open-source simulation based on an existing Dutch liveability score with a built-in AI module. Features are selected using feature engineering and Random Forests. Then, a modified scoring function is built based on the former liveability classes. The score is predicted using Random Forest for regression and achieved a recall of 0.83 with 10-fold cross-validation. Afterwards, Exploratory Factor Analysis is applied to select the actions present in the model. The resulting indicators are divided into 5 groups, and 12 actions are generated. The performance of four optimisation algorithms is compared, namely NSGA-II, PAES, SPEA2 and eps-MOEA, on three established criteria of quality: cardinality, the spread of the solutions, spacing, and the resulting score and number of turns. Although all four algorithms show different strengths, eps-MOEA is selected to be the most suitable for this problem. Ultimately, the simulation incorporates the model and the selected AI module in a GUI written in the Kivy framework for Python. Tests performed on users show positive responses and encourage further initiatives towards joining technology and public applications.Comment: 16 page

    İzmir‐Ankara suture as a Triassic to Cretaceous plate boundary – data from central Anatolia

    Get PDF
    The İzmir‐Ankara suture represents part of the boundary between Laurasia and Gondwana along which a wide Tethyan ocean was subducted. In northwest Turkey, it is associated with distinct oceanic subduction‐accretion complexes of Late Triassic, Jurassic and Late Cretaceous ages. The Late Triassic and Jurassic accretion complexes consist predominantly of basalt with lesser amounts of shale, limestone, chert, Permian (274 Ma zircon U‐Pb age) metagabbro and serpentinite, which have undergone greenschist facies metamorphism. Ar‐Ar muscovite ages from the phyllites range from 210 Ma down to 145 Ma with a broad southward younging. The Late Cretaceous subduction‐accretion complex, the ophiolitic mélange, consists of basalt, radiolarian chert, shale and minor amounts of recrystallized limestone, serpentinite and greywacke, showing various degrees of blueschist facies metamorphism and penetrative deformation. Ar‐Ar phengite ages from two blueschist metabasites are ca. 80 Ma (Campanian). The ophiolitic mélange includes large Jurassic peridotite‐gabbro bodies with plagiogranites with ca. 180 Ma U‐Pb zircon ages. Geochronological and geological data show that Permian to Cretaceous oceanic lithosphere was subducted north under the Pontides from the Late Triassic to the Late Cretaceous. This period was characterized generally by subduction‐accretion, except in the Early Cretaceous, when subduction‐erosion took place. In the Sakarya segment all the subduction accretion complexes, as well as the adjacent continental sequences, are unconformably overlain by Lower Eocene red beds. This, along with the stratigraphy of the Sakarya Zone indicate that the hard collision between the Sakarya Zone and the Anatolide‐Tauride Block took place in Paleocene

    Precision Measurement of the Boron to Carbon Flux Ratio in Cosmic Rays from 1.9 GV to 2.6 TV with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    Knowledge of the rigidity dependence of the boron to carbon flux ratio (B/C) is important in understanding the propagation of cosmic rays. The precise measurement of the B/C ratio from 1.9 GV to 2.6 TV, based on 2.3 million boron and 8.3 million carbon nuclei collected by AMS during the first 5 years of operation, is presented. The detailed variation with rigidity of the B/C spectral index is reported for the first time. The B/C ratio does not show any significant structures in contrast to many cosmic ray models that require such structures at high rigidities. Remarkably, above 65 GV, the B/C ratio is well described by a single power law R[superscript Δ] with index Δ=-0.333±0.014(fit)±0.005(syst), in good agreement with the Kolmogorov theory of turbulence which predicts Δ=-1/3 asymptotically.National Science Foundation (U.S.) (Grants 1455202 and 1551980)Wyle Research (Firm) (Grant 2014/T72497)United States. National Aeronautics and Space Administration (NASA Earth and Space Science Fellowship Grant HELIO15F-0005

    Antiproton Flux, Antiproton-to-Proton Flux Ratio, and Properties of Elementary Particle Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station

    Get PDF
    International audienceA precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio inprimary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 × 105antiproton events and 2.42 × 109 proton events. The fluxes and flux ratios of charged elementary particlesin cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton ¯p, protonp, and positron eþ fluxes are found to have nearly identical rigidity dependence and the electron e− fluxexhibits a different rigidity dependence. Below 60 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios eachreaches a maximum. From ∼60 to ∼500 GV, the ( ¯ p=p), ( ¯ p=eþ), and (p=eþ) flux ratios show no rigiditydependence. These are new observations of the properties of elementary particles in the cosmos

    Cooperation and Competition Strategies in Multi-objective Shape Optimization - Application to Low-boom/Low-drag Supersonic Business Jet

    Get PDF
    International audienceCooperation and competition are natural laws that regulate the interactions between agents in numerous physical, or social phenomena. By analogy, we transpose these laws to devise e cient multi-objective algorithms applied to shape optimization problems involving two or more disciplines. Two e cient strategies are presented in this paper: a multiple gradient descent algorithm (MGDA) and a Nash game strategy based on an original split of territories between disciplines. MGDA is a multi-objective extension of the steepest descent method. The use of a gradient-based algorithm that exploits the cooperation principle aims at reducing the number of iterations required for classical multi-objective evolutionary algorithms to converge to a Pareto optimal design. On the other hand side, the Nash game strategy is well adapted to typical aeronautical optimization problems, when, after having optimized a preponderant or fragile discipline (e.g. aerodynamics), by the minimization of a primary objective-function, one then wishes to reduce a secondary objective-function, representative of another discipline, in a process that avoids degrading excessively the original optimum. Presently, the combination of the two approaches is exploited, in a method that explores the entire Pareto front. Both algorithms are rst analyzed on analytical test cases to demonstrate their main features and then applied to the optimum-shape design of a low-boom/low-drag supersonic business jet design problem. Indeed, sonic boom is one of the main limiting factors to the development of civil supersonic transportation. As the driving design for low-boom is not compliant with the low-drag one, our goal is to provide a trade-o between aerodynamics and acoustics. Thus Nash games are adopted to de ne a low-boom con guration close to aerodynamic optimality w.r.t. wave drag

    Towards Understanding the Origin of Cosmic-Ray Positrons

    Get PDF
    Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from 25.2 +/- 1.8 GeV compared to the lower-energy, power-law trend, (b) a sharp dropoff above 284(-64)(+91) GeV, (c) in the entire energy range the positron flux is well described by the sum of a term associated with the positrons produced in the collision of cosmic rays, which dominates at low energies, and a new source term of positrons, which dominates at high energies, and (d) a finite energy cutoff of the source term of E-s = 810(-180)(+310) GeV is established with a significance of more than 4 sigma. These experimental data on cosmic ray positrons show that, at high energies, they predominantly originate either from dark matter annihilation or from other astrophysical sources
    corecore