159 research outputs found
Recommended from our members
Inorganic Fillers and Their Effects on the Properties of Flax/PLA Composites after UV Degradation
Data Availability Statement:
The data that support the findings of this study are available on request from the corresponding author.Copyright © 2023 by the authors. The present investigation seeks to assess the impact of fillers on the mechanical characteristics of entirely biodegradable composites, introducing an advanced solution to fulfil long-term durability demands within point-of-purchase (POP) industries. The inclusion of calcium carbonate (CaCO3) fillers on the various properties of the flax fibre-reinforced composites, after accelerated irradiation in an ultraviolet (UV) radiation exposure has been investigated in the present study. Different types of flax fibre-reinforced poly lactic acid (PLA) biocomposites (with and without filler) were fabricated. The mechanical (tensile and flexural), and physical properties of the specimens were assessed after 500 h of exposure to accelerated UV irradiation of 0.48 W/m2 at 50 °C and were compared with those of the unexposed specimens. The results indicate that the presence of the inorganic filler significantly improved the performance of the biocomposites compared to the unfilled biocomposites after UV exposure. After adding 20% of fillers, the tensile strength was increased by 2% after UV degradation, whereas the biocomposite without filler lost 18% of its strength after UV exposure. This can be attributed to the change in the photo-degradation of the PLA due to the presence of the CaCO3 filler, which acts as a safeguard against UV light penetration by creating a protective barrier. The scanning electron microscopy (SEM) images of the degraded specimen surface show substantial difference in the surface topography of the composites with and without fillers.INTERREG VA Program, FLOWER project, grant number 23
Isomeric states in No
6 pagesInternational audienceIsomeric states in 253No have been investigated by conversion-electron and gamma-ray spectroscopy with the GABRIELA detection system. The 31 micro second isomer reported more than 30 years ago is found to decay to the ground state of 253No by the emission of a 167 keV M2 transition. The spin and parity of this low-lying isomeric state are established to be 5/2+. The presence of another longer-lived isomeric state is also discussed
Medium-spin states in neutron-rich 83As and 81As
The 83,81 As nuclei have been produced as fission fragments in the fusion reaction 18O + 208Pb at 85 MeV bombarding energy and studied with the Euroball array. Medium-spin states of 83,81 As have been established up to ∼3.5 MeV excitation energy. From angular correlation analysis, spin values have been assigned to most of the 81 As excited states. The behaviors of the yrast structures identified in this work are discussed in comparison with the general features known in the mass region. Then they are compared to the results of two theoretical approaches: the "rotor + quasiparticle" for 81 As and the shell model using the effective interactions JUN45 for 83,81 As
New high-spin states of Ce and Ba from fusion-fission reactions: Proton excitations in the N = 84 isotones
High-spin states in the Ce and Ba nuclei have been populated in the C + U and O + Pb fusion-fission reactions at 90 MeV and 85 MeV bombarding energy, respectively. The emitted -radiation was detected using the Euroball III and IV arrays. The high-spin yrast and near-to-yrast structures of Ce have been considerably extended. The level scheme of Ba has been extended by six new levels. The newly observed structures in these N = 84 isotones are discussed by analogy with the neighbouring nuclei
Direct targets of Klf5 transcription factor contribute to the maintenance of mouse embryonic stem cell undifferentiated state
<p>Abstract</p> <p>Background</p> <p>A growing body of evidence has shown that Krüppel-like transcription factors play a crucial role in maintaining embryonic stem cell (ESC) pluripotency and in governing ESC fate decisions. Krüppel-like factor 5 (Klf5) appears to play a critical role in these processes, but detailed knowledge of the molecular mechanisms of this function is still not completely addressed.</p> <p>Results</p> <p>By combining genome-wide chromatin immunoprecipitation and microarray analysis, we have identified 161 putative primary targets of Klf5 in ESCs. We address three main points: (1) the relevance of the pathways governed by Klf5, demonstrating that suppression or constitutive expression of single Klf5 targets robustly affect the ESC undifferentiated phenotype; (2) the specificity of Klf5 compared to factors belonging to the same family, demonstrating that many Klf5 targets are not regulated by Klf2 and Klf4; and (3) the specificity of Klf5 function in ESCs, demonstrated by the significant differences between Klf5 targets in ESCs compared to adult cells, such as keratinocytes.</p> <p>Conclusions</p> <p>Taken together, these results, through the definition of a detailed list of Klf5 transcriptional targets in mouse ESCs, support the important and specific functional role of Klf5 in the maintenance of the undifferentiated ESC phenotype.</p> <p>See: <url>http://www.biomedcental.com/1741-7007/8/125</url></p
- …