8,686 research outputs found

    Acceleration-Induced Deconfinement Transitions in de Sitter Spacetime

    Full text link
    In this note, we consider confining gauge theories in D=2,3,4D=2,3,4 defined by S2S^2 or T2T^2 compactification of higher-dimensional conformal field theories with gravity duals. We investigate the behavior of these theories on de Sitter spacetime as a function of the Hubble parameter. We find that in each case, the de Sitter vacuum state of the field theory (defined by Euclidian continuation from a sphere) undergoes a deconfinement transition as the Hubble parameter is increased past a critical value. In each case, the corresponding critical de Sitter temperature is smaller than the corresponding Minkowski-space deconfinement temperature by a factor nearly equal to the dimension of the de Sitter spacetime. The behavior is qualitatively and quantitatively similar to that for confining theories defined by S1S^1 compactification of CFTs, studied recently in arXiv:1007.3996.Comment: 25 pages, 7 figure

    Tailoring Three-Point Functions and Integrability III. Classical Tunneling

    Full text link
    We compute three-point functions between one large classical operator and two large BPS operators at weak coupling. We consider operators made out of the scalars of N=4 SYM, dual to strings moving in the sphere. The three-point function exponentiates and can be thought of as a classical tunneling process in which the classical string-like operator decays into two classical BPS states. From an Integrability/Condensed Matter point of view, we simplified inner products of spin chain Bethe states in a classical limit corresponding to long wavelength excitations above the ferromagnetic vacuum. As a by-product we solved a new long-range Ising model in the thermodynamic limit.Comment: 37 pages, 10 figure

    Universal scaling properties of extremal cohesive holographic phases

    Get PDF
    We show that strongly-coupled, translation-invariant holographic IR phases at finite density can be classified according to the scaling behaviour of the metric, the electric potential and the electric flux introducing four critical exponents, independently of the details of the setup. Solutions fall into two classes, depending on whether they break relativistic symmetry or not. The critical exponents determine key properties of these phases, like thermodynamic stability, the (ir)relevant deformations around them, the low-frequency scaling of the optical conductivity and the nature of the spectrum for electric perturbations. We also study the scaling behaviour of the electric flux through bulk minimal surfaces using the Hartnoll-Radicevic order parameter, and characterize the deviation from the Ryu-Takayanagi prescription in terms of the critical exponents.Comment: v4: corrected a typo in eqn (3.29), now (3.28). Conclusions unchange

    Entropy from AdS(3)/CFT(2)

    Full text link
    We parametrize the (2+1)-dimensional AdS space and the BTZ black hole with Fefferman-Graham coordinates starting from the AdS boundary. We consider various boundary metrics: Rindler, static de Sitter and FRW. In each case, we compute the holographic stress-energy tensor of the dual CFT and confirm that it has the correct form, including the effects of the conformal anomaly. We find that the Fefferman-Graham parametrization also spans a second copy of the AdS space, including a second boundary. For the boundary metrics we consider, the Fefferman-Graham coordinates do not cover the whole AdS space. We propose that the length of the line delimiting the excluded region at a given time can be identified with the entropy of the dual CFT on a background determined by the boundary metric. For Rindler and de Sitter backgrounds our proposal reproduces the expected entropy. For a FRW background it produces a generalization of the Cardy formula that takes into account the vacuum energy related to the expansion.Comment: major revision with several clarifications and corrections, 22 page

    Observation of Kuznetsov-Ma soliton dynamics in optical fibre

    Get PDF
    The nonlinear Schrödinger equation (NLSE) is a central model of nonlinear science, applying to hydrodynamics, plasma physics, molecular biology and optics. The NLSE admits only few elementary analytic solutions, but one in particular describing a localized soliton on a finite background is of intense current interest in the context of understanding the physics of extreme waves. However, although the first solution of this type was the Kuznetzov-Ma (KM) soliton derived in 1977, there have in fact been no quantitative experiments confirming its validity. We report here novel experiments in optical fibre that confirm the KM soliton theory, completing an important series of experiments that have now observed a complete family of soliton on background solutions to the NLSE. Our results also show that KM dynamics appear more universally than for the specific conditions originally considered, and can be interpreted as an analytic description of Fermi-Pasta-Ulam recurrence in NLSE propagation

    Stimulated superconductivity at strong coupling

    Full text link
    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.Comment: 19 pages, 2 figure. v3: Comments, references and one figure added. Version to appear in JHE

    Spinning strings and integrable spin chains in the AdS/CFT correspondence

    Get PDF
    In this introductory review we discuss dynamical tests of the AdS_5 x S^5 string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we argue that semiclassical string energies yield information on the quantum spectrum of the string in the limit of large angular momenta on the S^5. The energies of the folded and circular spinning string solutions rotating on a S^3 within the S^5 are derived, which yield all loop predictions for the dual gauge theory scaling dimensions. These follow from the eigenvalues of the dilatation operator of N=4 super Yang-Mills in a minimal SU(2) subsector and we display its reformulation in terms of a Heisenberg s=1/2 spin chain along with the coordinate Bethe ansatz for its explicit diagonalization. In order to make contact to the spinning string energies we then study the thermodynamic limit of the one-loop gauge theory Bethe equations and demonstrate the matching with the folded and closed string result at this loop order. Finally the known gauge theory results at higher-loop orders are reviewed and the associated long-range spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop conjecture for the gauge theory Bethe equations. This uncovers discrepancies at the three-loop order between gauge theory scaling dimensions and string theory energies and the implications of this are discussed. Along the way we comment on further developments and generalizations of the subject and point to the relevant literature.Comment: 40 pages, invited contribution to Living Reviews in Relativity. v2: improvements in the text and references adde

    Scattering of Giant Magnons in CP^3

    Full text link
    We study classical scattering phase of CP^2 dyonic giant magnons in R_t x CP^3. We construct two-soliton solutions explicitly by the dressing method. Using these solutions, we compute the classical time delays for the scattering of giant magnons, and compare them to boundstate S-matrix elements derived from the conjectured AdS_4/CFT_3 S-matrix by Ahn and Nepomechie in the strong coupling limit. Our result is consistent with the conjectured S-matrix. The dyonic solutions play an essential role in revealing the polarization dependence of scattering phase.Comment: 29 pages; v2: minor corrections; v3: minor corrections, references added ; v4: minor corrections ; v5: minor corrections based on the published versio

    Coherent quantum phase slip

    Full text link
    A hundred years after discovery of superconductivity, one fundamental prediction of the theory, the coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect: whilst the latter is a coherent transfer of charges between superconducting contacts, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, the CQPS has been only a subject of theoretical study. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors in the vicinity of the superconductor-insulator transition (SIT). Here we report the first direct observation of the CQPS in a strongly disordered indium-oxide (InOx) superconducting wire inserted in a loop, which is manifested by the superposition of the quantum states with different number of fluxes. Similarly to the Josephson effect, our observation is expected to lead to novel applications in superconducting electronics and quantum metrology.Comment: 14 pages, 3 figure

    Schr\"odinger Holography with and without Hyperscaling Violation

    Full text link
    We study the properties of the Schr\"odinger-type non-relativistic holography for general dynamical exponent z with and without hyperscaling violation exponent \theta. The scalar correlation function has a more general form due to general z as well as the presence of \theta, whose effects also modify the scaling dimension of the scalar operator. We propose a prescription for minimal surfaces of this "codimension 2 holography," and demonstrate the (d-1) dimensional area law for the entanglement entropy from (d+3) dimensional Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z < d+2, even without hyperscaling violation, which interpolates between the logarithmic violation and extensive volume dependence of entanglement entropy. Similar violations are also found in the presence of the hyperscaling violation. Their dual field theories are expected to have novel phases for the parameter range, including Fermi surface. We also analyze string theory embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected, references added, v3: typos corrected, references added, published versio
    corecore