415 research outputs found
V1647 Orionis (IRAS 05436-0007) : A New Look at McNeil's Nebula
We present a study of the newly discovered McNeil's nebula in Orion using the
JHKs-band simultaneous observations with the near-infrared (NIR) camera SIRIUS
on the IRSF 1.4m telescope. The cometary infrared nebula is clearly seen
extending toward north and south from the NIR source (V1647 Orionis) that
illuminates McNeil's nebula. The compact nebula has an apparent diameter of
about 70 arcsec. The nebula is blue (bright in J) and has a cavity structure
with two rims extending toward north-east and north-west. The north-east rim is
brighter and sharp, while the north-west rim is diffuse. The north-east rim can
be traced out to ~ 40 arcsec from the location of the NIR source. In contrast,
no cavity structure is seen toward the south, although diffuse nebula is
extended out to ~ 20 arcsec. New NIR photometric data show a significant
variation in the magnitudes (> 0.15 mag) of the source of McNeil's nebula
within a period of one week, that is possibly under the phase of eruptive
variables like FUors or EXors.Comment: 13 pages, 5 figures in JPEG format. Accepted for the publication in
PASJ Letter
Phase Diagram of the Electron-Doped Cuprate Superconductors
We investigate the phase diagram of the electron-doped systems in high-Tc
cuprates. We calculate the superconducting transition temperature Tc, the
antiferromagnetic transition temperature TN, the NMR relaxation rate 1/T1 with
the antiferromagnetic fluctuations in the fluctuation-exchange (FLEX)
approximation and with the superconducting fluctuations in the self-consistent
t-matrix approximation. Obtained phase diagram has common features as those in
the hole-doped systems, including the antiferromagnetic state, the
superconducting state and the spin gap phenomenon. Doping-dependences of TN, Tc
and Tsg (spin gap temperature) are, however, different with those in the
hole-doped systems. These differences are due to the intrinsic nature of the
ingap states which are intimately related with the Zhang-Rice singlets in the
hole-doped systems and are correlated d-electrons in the electron-doped
systems, respectively, which has been shown in the d-p model.Comment: 4 pages, 3 figure
High-Contrast NIR Polarization Imaging of MWC480
One of the key predictions of modeling from the IR excess of Herbig Ae stars
is that for protoplanetary disks, where significant grain growth and settling
has occurred, the dust disk has flattened to the point that it can be partially
or largely shadowed by the innermost material at or near the dust sublimation
radius. When the self-shadowing has already started, the outer disk is expected
to be detected in scattered light only in the exceptional cases that the scale
height of the dust disk at the sublimation radius is smaller than usual.
High-contrast imaging combined with the IR spectral energy distribution allow
us to measure the degree of flattening of the disk, as well as to determine the
properties of the outer disk. We present polarimetric differential imaging in
band obtained with Subaru/HiCIAO of one such system, MWC 480. The HiCIAO
data were obtained at a historic minimum of the NIR excess. The disk is
detected in scattered light from 0\farcs2-1\farcs0 (27.4-137AU). Together with
the marginal detection of the disk from 1998 February 24 by HST/NICMOS, our
data constrain the opening half angle for the disk to lie between
1.3. When compared with similar measures in CO for
the gas disk from the literature, the dust disk subtends only 30% of the
gas disk scale height (H/R0.03). Such a dust disk is a factor of 5-7
flatter than transitional disks, which have structural signatures that giant
planets have formed.Comment: 21 pages, 6 figures, 1 table, ApJ accepted 2012-05-0
Direct Imaging of Fine Structures in Giant Planet Forming Regions of the Protoplanetary Disk around AB Aurigae
We report high-resolution 1.6 \micron polarized intensity () images of
the circumstellar disk around the Herbig Ae star AB Aur at a radial distance of
22 AU () up to 554 AU (3.85), which have been obtained by the
high-contrast instrument HiCIAO with the dual-beam polarimetry. We revealed
complicated and asymmetrical structures in the inner part (140 AU) of
the disk, while confirming the previously reported outer ( 200 AU)
spiral structure. We have imaged a double ring structure at 40 and
100 AU and a ring-like gap between the two. We found a significant
discrepancy of inclination angles between two rings, which may indicate that
the disk of AB Aur is warped. Furthermore, we found seven dips (the typical
size is 45 AU or less) within two rings as well as three prominent
peaks at 40 AU. The observed structures, including a bumpy double ring, a
ring-like gap, and a warped disk in the innermost regions, provide essential
information for understanding the formation mechanism of recently detected
wide-orbit ( 20 AU) planets.Comment: 12 pages, 3 figure
Characterization of the gaseous companion {\kappa} Andromedae b: New Keck and LBTI high-contrast observations
We previously reported the direct detection of a low mass companion at a
projected separation of 55+-2 AU around the B9 type star {\kappa} Andromedae.
The properties of the system (mass ratio, separation) make it a benchmark for
the understanding of the formation and evolution of gas giant planets and brown
dwarfs on wide-orbits. We present new angular differential imaging (ADI) images
of the Kappa Andromedae system at 2.146 (Ks), 3.776 (L'), 4.052 (NB 4.05) and
4.78 {\mu}m (M') obtained with Keck/NIRC2 and LBTI/LMIRCam, as well as more
accurate near-infrared photometry of the star with the MIMIR instrument. We
derive a more accurate J = 15.86 +- 0.21, H = 14.95 +- 0.13, Ks = 14.32 +- 0.09
mag for {\kappa} And b. We redetect the companion in all our high contrast
observations. We confirm previous contrasts obtained at Ks and L' band. We
derive NB 4.05 = 13.0 +- 0.2 and M' = 13.3 +- 0.3 mag and estimate
Log10(L/Lsun) = -3.76 +- 0.06. We build the 1-5 microns spectral energy
distribution of the companion and compare it to seven PHOENIX-based atmospheric
models in order to derive Teff = 1900+100-200 K. Models do not set constrains
on the surface gravity. ``Hot-start" evolutionary models predict masses of
14+25-2 MJup based on the luminosity and temperature estimates, and considering
a conservative age range for the system (30+120-10 Myr). ``warm-start"
evolutionary tracks constrain the mass to M >= 11 MJup. Therefore, the mass of
{\kappa} Andromedae b mostly falls in the brown-dwarf regime, due to remaining
uncertainties in age and mass-luminosity models. According to the formation
models, disk instability in a primordial disk could account for the position
and a wide range of plausible masses of {\kappa} And b.Comment: 20 pages, 16 figures, accepted for publication in Astronomy and
Astrophysics on August 6, 201
- …