507 research outputs found

    Singular Instantons Made Regular

    Full text link
    The singularity present in cosmological instantons of the Hawking-Turok type is resolved by a conformal transformation, where the conformal factor has a linear zero of codimension one. We show that if the underlying regular manifold is taken to have the topology of RP4RP^4, and the conformal factor is taken to be a twisted field so that the zero is enforced, then one obtains a one-parameter family of solutions of the classical field equations, where the minimal action solution has the conformal zero located on a minimal volume noncontractible RP3RP^3 submanifold. For instantons with two singularities, the corresponding topology is that of a cylinder S3Ă—[0,1]S^3\times [0,1] with D=4 analogues of `cross-caps' at each of the endpoints.Comment: 23 pages, compressed and RevTex file, including nine postscript figure files. Submitted versio

    Cosmic Texture from a Broken Global SU(3) Symmetry

    Get PDF
    We investigate the observable consequences of creating cosmic texture by breaking a global SU(3) symmetry, rather than the SU(2) case which is generally studied. To this end, we study the nonlinear sigma model for a totally broken SU(3) symmetry, and develop a technique for numerically solving the classical field equations. This technique is applied in a cosmological context: the energy of the collapsing SU(3) texture field is used as a gravitational source for the production of perturbations in the primordial fluids of the early universe. From these calculations, we make predictions about the appearance of the anisotropies in the cosmic microwave background radiation (CMBR) which would be present if the large scale structure of the universe was gravitationally seeded by the collapse of SU(3) textures.Comment: 28 pages, latex, 11 figures, submitted to Phys. Rev.

    A Causal Source which Mimics Inflation

    Get PDF
    How unique are the inflationary predictions for the cosmic microwave anisotropy pattern? In this paper, it is asked whether an arbitrary causal source for perturbations in the standard hot big bang could effectively mimic the predictions of the simplest inflationary models. A surprisingly simple example of a `scaling' causal source is found to closely reproduce the inflationary predictions. This letter extends the work of a previous paper (ref. 6) to a full computation of the anisotropy pattern, including the Sachs Wolfe integral. I speculate on the possible physics behind such a source.Comment: 4 pages, RevTex, 3 figure

    A Semi-Analytical Analysis of Texture Collapse

    Full text link
    This study presents a simplified approach to studying the dynamics of global texture collapse. We derive equations of motion for a spherically symmetric field configuration using a two parameter ansatz. Then we analyse the effective potential for the resulting theory to understand possible trajectories of the field configuration in the parameter space of the ansatz. Numerical results are given for critical winding and collapse time in spatially flat non-expanding, and flat expanding universes. In addition, the open non-expanding and open-expanding cases are studied.Comment: 12 pages, figures available from author, BROWN-HET-895, uses phyzz

    A smooth bouncing cosmology with scale invariant spectrum

    Full text link
    We present a bouncing cosmology which evolves from the contracting to the expanding phase in a smooth way, without developing instabilities or pathologies and remaining in the regime of validity of 4d effective field theory. A nearly scale invariant spectrum of perturbations is generated during the contracting phase by an isocurvature scalar with a negative exponential potential and then converted to adiabatic. The model predicts a slightly blue spectrum, n_S >~ 1, no observable gravitational waves and a high (but model dependent) level of non-Gaussianities with local shape. The model represents an explicit and predictive alternative to inflation, although, at present, it is clearly less compelling.Comment: 20 pages, 1 fig. v2: references added, JCAP published versio

    The string wave function across a Kasner singularity

    Full text link
    A collision of orbifold planes in eleven dimensions has been proposed as an explanation of the hot big bang. When the two planes are close to each other, the winding membranes become the lightest modes of the theory, and can be effectively described in terms of fundamental strings in a ten dimensional background. Near the brane collision, the eleven-dimensional metric is an Euclidean space times a 1+1-dimensional Milne universe. However, one may expect small perturbations to lead into a more general Kasner background. In this paper we extend the previous classical analysis of winding membranes to Kasner backgrounds, and using the Hamiltonian equations, solve for the wave function of loops with circular symmetry. The evolution across the singularity is regular, and explained in terms of the excitement of higher oscillation modes. We also show there is finite particle production and unitarity is preserved.Comment: 28 pages, 10 figure

    Collapse of topological texture

    Get PDF
    We study analytically the process of a topological texture collapse in the approximation of a scaling ansatz in the nonlinear sigma-model. In this approximation we show that in flat space-time topological texture eventually collapses while in the case of spatially flat expanding universe its fate depends on the rate of expansion. If the universe is inflationary, then there is a possibility that texture will expand eternally; in the case of exponential inflation the texture may also shrink or expand eternally to a finite limiting size, although this behavior is degenerate. In the case of power law noninflationary expansion topological texture eventually collapses. In a cold matter dominated universe we find that texture which is formed comoving with the universe expansion starts collapsing when its spatial size becomes comparable to the Hubble size, which result is in agreement with the previous considerations. In the nonlinear sigma-model approximation we consider also the final stage of the collapsing ellipsoidal topological texture. We show that during collapse of such a texture at least two of its principal dimensions shrink to zero in a similar way, so that their ratio remains finite. The third dimension may remain finite (collapse of cigar type), or it may also shrink to zero similar to the other two dimensions (collapse of scaling type), or shrink to zero similar to the product of the remaining two dimensions (collapse of pancake type).Comment: 23 pages, LaTeX, to be published in Phys. Rev.

    Beyond the Small-Angle Approximation For MBR Anisotropy from Seeds

    Full text link
    In this paper we give a general expression for the energy shift of massless particles travelling through the gravitational field of an arbitrary matter distribution as calculated in the weak field limit in an asymptotically flat space-time. It is {\it not} assumed that matter is non-relativistic. We demonstrate the surprising result that if the matter is illuminated by a uniform brightness background that the brightness pattern observed at a given point in space-time (modulo a term dependent on the oberver's velocity) depends only on the matter distribution on the observer's past light-cone. These results apply directly to the cosmological MBR anisotropy pattern generated in the immediate vicinity of of an object like a cosmic string or global texture. We apply these results to cosmic strings, finding a correction to previously published results for in the small-angle approximation. We also derive the full-sky anisotropy pattern of a collapsing texture knot.Comment: 23 pages, FERMILAB-Pub-94/047-
    • …
    corecore