13,522 research outputs found

    A Flare of AE Aquarii Observed with XMM-Newton

    Full text link
    We present the results of analyzing the XMM-Newton data obtained in 2001 November 7 - 8. A flare is observed simultaneously in X-ray and UV together with a quiescence. We find that during the flare event X-ray flux varies with UV with no significant time lag, indicating a close correlation of flux variation for X-ray and UV flares. An upper limit of the lag is estimated to be \~1 min. From a timing analysis for X-ray data, we find that both pulsed and unpulsed flux increase clearly as the flare advances in the entire energy band 0.15 - 10 keV. The net increase of pulsed flux to the quiescence is, however, small and corresponds to about 3 - 4% of the increase in unpulsed flux, confirming that a flux variation of flare in AE Aqr is dominated by unpulsed X-rays. A spectral analysis reveals that the energy spectrum is similar to that of the quiescence at the beginning of the flare, but the spectrum becomes harder as the flare advances. Based on these results, we discuss the current issues that need to be clarified, e.g., the possible flaring site and the mass accretion problem of the white dwarf. We also discuss the flare properties obtained in this study.Comment: 15 pages, 3 tables, 9 figures, accepted for publication in Ap

    Dynamics of Helping Behavior and Networks in a Small World

    Full text link
    To investigate an effect of social interaction on the bystanders' intervention in emergency situations a rescue model was introduced which includes the effects of the victim's acquaintance with bystanders and those among bystanders from a network perspective. This model reproduces the experimental result that the helping rate (success rate in our model) tends to decrease although the number of bystanders kk increases. And the interaction among homogeneous bystanders results in the emergence of hubs in a helping network. For more realistic consideration it is assumed that the agents are located on a one-dimensional lattice (ring), then the randomness p[0,1]p \in [0,1] is introduced: the kpkp random bystanders are randomly chosen from a whole population and the kkpk-kp near bystanders are chosen in the nearest order to the victim. We find that there appears another peak of the network density in the vicinity of k=9k=9 and p=0.3p=0.3 due to the cooperative and competitive interaction between the near and random bystanders.Comment: 13 pages, 8 figure

    Anisotropic ferromagnetism in carbon doped zinc oxide from first-principles studies

    Full text link
    A density functional theory study of substitutional carbon impurities in ZnO has been performed, using both the generalized gradient approximation (GGA) and a hybrid functional (HSE06) as exchange-correlation functional. It is found that the non-spinpolarized CZn_\mathrm{Zn} impurity is under almost all conditions thermodynamically more stable than the CO_\mathrm{O} impurity which has a magnetic moment of 2μB2\mu_{\mathrm{B}}, with the exception of very O-poor and C-rich conditions. This explains the experimental difficulties in sample preparation in order to realize d0d^{0}-ferromagnetism in C-doped ZnO. From GGA calculations with large 96-atom supercells, we conclude that two CO_\mathrm{O}-CO_\mathrm{O} impurities in ZnO interact ferromagnetically, but the interaction is found to be short-ranged and anisotropic, much stronger within the hexagonal abab-plane of wurtzite ZnO than along the c-axis. This layered ferromagnetism is attributed to the anisotropy of the dispersion of carbon impurity bands near the Fermi level for CO_{\mathrm{O}} impurities in ZnO. From the calculated results, we derive that a CO_{\mathrm{O}} concentration between 2% and 6% should be optimal to achieve d0d^{0}-ferromagnetism in C-doped ZnO.Comment: 9 pages, 7 figure

    Compaction and dilation rate dependence of stresses in gas-fluidized beds

    Full text link
    A particle dynamics-based hybrid model, consisting of monodisperse spherical solid particles and volume-averaged gas hydrodynamics, is used to study traveling planar waves (one-dimensional traveling waves) of voids formed in gas-fluidized beds of narrow cross sectional areas. Through ensemble-averaging in a co-traveling frame, we compute solid phase continuum variables (local volume fraction, average velocity, stress tensor, and granular temperature) across the waves, and examine the relations among them. We probe the consistency between such computationally obtained relations and constitutive models in the kinetic theory for granular materials which are widely used in the two-fluid modeling approach to fluidized beds. We demonstrate that solid phase continuum variables exhibit appreciable ``path dependence'', which is not captured by the commonly used kinetic theory-based models. We show that this path dependence is associated with the large rates of dilation and compaction that occur in the wave. We also examine the relations among solid phase continuum variables in beds of cohesive particles, which yield the same path dependence. Our results both for beds of cohesive and non-cohesive particles suggest that path-dependent constitutive models need to be developed.Comment: accepted for publication in Physics of Fluids (Burnett-order effect analysis added
    corecore