94,106 research outputs found

    Polarimetric variations of binary stars. II. Numerical simulations for circular and eccentric binaries in Mie scattering envelopes

    Get PDF
    We present numerical simulations of the periodic polarimetric variations produced by a binary star placed at the center of an empty spherical cavity inside a circumbinary ellipsoidal and optically thin envelope made of dust grains. Mie single-scattering is considered along with pre- and post-scattering extinction factors which produce a time-varying optical depth and affect the morphology of the periodic variations. We are interested in the effects that various parameters will have on the average polarization, the amplitude of the polarimetric variations, and the morphology of the variability. We show that the absolute amplitudes of the variations are smaller for Mie scattering than for Thomson scattering. Among the four grain types that we have studied, the highest polarizations are produced by grains with sizes in the range 0.1-0.2 micron. In general, the variations are seen twice per orbit. In some cases, because spherical dust grains have an asymmetric scattering function, the polarimetric curves produced also show variations seen once per orbit. Circumstellar disks produce polarimetric variations of greater amplitude than circumbinary envelopes. Another goal of these simulations is to see if the 1978 BME (Brown, McLean, & Emslie, ApJ, 68, 415) formalism, which uses a Fourier analysis of the polarimetric variations to find the orbital inclination for Thomson-scattering envelopes, can still be used for Mie scattering. We find that this is the case, if the amplitude of the variations is sufficient and the true inclinations is i_true > 45 deg. For eccentric orbits, the first-order coefficients of the Fourier fit, instead of second-order ones, can be used to find almost all inclinations.Comment: 23 pages, 5 figures, to be published in Astronomical Journa

    X-ray Emission from Magnetically Torqued Disks of Oe/Be Stars

    Full text link
    We focus attention on the Oe/Be stars to test the concept that the disks of these stars form by magnetic channeling of wind material toward the equator. Calculations are made of the X-rays expected from the Magnetically Torqued Disk (MTD) model for Be stars discussed by Cassinelli et al. (2002), by Maheswaran (2003), and by Brown et al. (2004). The dominant parameters in the model are the β\beta value of the velocity law, the rotation rate of the star, SoS_o, and the ratio of the magnetic field energy density to the disk gravitational energy density, γ\gamma. The model predictions are compared with the ROSATROSAT observations obtained for an O9.5 star ζ\zeta Oph from \Berghofer et al. (1996) and for 7 Be stars from Cohen et al. (1997). Extra considerations are also given here to the well studied Oe star ζ\zeta Oph for which we have ChandraChandra observations of the X-ray line profiles of the triad of He-like lines from the ion Mg XI.Comment: 28 pages with 6 figures. Accepted for publication in Ap

    Long-range potentials and (n1)d+ns(n-1)d+ns molecular resonances in an ultracold rydberg gas

    Full text link
    We have calculated long-range molecular potentials of the 0g+0_g^{+}, 0u0_u^{-} and 1u1_u symmetries between highly-excited rubidium atoms. Strong np+npnp+np potentials characterized by these symmetries are important in describing interaction-induced phenomena in the excitation spectra of high npnp Rydberg states. Long-range molecular resonances are such phenomena and they were first reported in S.M. Farooqi {\it et al.}, Phys. Rev. Lett. {\bf 91} 183002. One class of these resonances occurs at energies corresponding to excited atom pairs (n1)d+ns(n-1)d+ns. Such resonances are attributed to \ell-mixing due to Rydberg-Rydberg interactions so that otherwise forbidden molecular transitions become allowed. We calculate molecular potentials in Hund's case (c), use them to find the resonance lineshape and compare to experimental results.Comment: 11 pages, 7 figure

    The Hyperfine Molecular Hubbard Hamiltonian

    Full text link
    An ultracold gas of heteronuclear alkali dimer molecules with hyperfine structure loaded into a one-dimensional optical lattice is investigated. The \emph{Hyperfine Molecular Hubbard Hamiltonian} (HMHH), an effective low-energy lattice Hamiltonian, is derived from first principles. The large permanent electric dipole moment of these molecules gives rise to long range dipole-dipole forces in a DC electric field and allows for transitions between rotational states in an AC microwave field. Additionally, a strong magnetic field can be used to control the hyperfine degrees of freedom independently of the rotational degrees of freedom. By tuning the angle between the DC electric and magnetic fields and the strength of the AC field it is possible to control the number of internal states involved in the dynamics as well as the degree of correlation between the spatial and internal degrees of freedom. The HMHH's unique features have direct experimental consequences such as quantum dephasing, tunable complexity, and the dependence of the phase diagram on the molecular state

    Interferometric method for determining the sum of the flexoelectric coefficients (e1+e3) in an ionic nematic material

    Get PDF
    The time-dependent periodic distortion profile in a nematic liquid crystal phase grating has been measured from the displacement of tilt fringes in a Mach-Zehnder interferometer. A 0.2 Hz squarewave voltage was applied to alternate stripe electrodes in an interdigitated electrode geometry. The time-dependent distortion profile is asymmetric with respect to the polarity of the applied voltage and decays with time during each half period due to ionic shielding. This asymmetry in the response allows the determination of the sum of the flexoelectric coefficients (e1+e3) using nematic continuum theory since the device geometry does not possess inherent asymmetry

    Penrose Diagram for a Transient Black Hole

    Full text link
    A Penrose diagram is constructed for a spatially coherent black hole that smoothly begins an accretion, then excretes symmetrically as measured by a distant observer, with the initial and final states described by a metric of Minkowski form. Coordinate curves on the diagram are computationally derived. Causal relationships between space-time regions are briefly discussed. The life cycle of the black hole demonstrably leaves asymptotic observers in an unaltered Minkowski space-time of uniform conformal scale.Comment: 14 pages, 9 figures, spelling correction

    Decoherence in QED at finite temperature

    Full text link
    We consider a wave packet of a charged particle passing through a cavity filled with photons at temperature T and investigate its localization and interference properties. It is shown that the wave packet becomes localized and the interference disappears with an exponential speed after a sufficiently long path through the cavity.Comment: Latex, 10 page

    Alpine river ecosystem response to glacial and anthropogenic flow pulses

    Get PDF
    Alpine glacier-fed river hydrology, chemistry and biology can vary significantly both in space and over diurnal to inter-annual timescales, as a function of dynamic inputs of water from snow, ice and groundwater. The sensitivity of biota to these water source dynamics potentially makes them susceptible to hydrological changes induced by anthropogenic activities, such as flow regulation, but most alpine studies have focused on intact rivers and during summer only. We examined the patiotemporal dynamics of physicochemical habitat and macroinvertebrate communities in a high (>2000m) altitude floodplain in the European Alps over an 18 month period. A novel insight is presented into the river system and macroinvertebrate community responses to both natural glacier melt driven expansion-contraction of unregulated river sites, and intermittent flow pulses due to hydropower regulation. Mainstem glacier-fed river sites displayed cyclical seasonal dynamics in macroinvertebrate community composition, shifting to be partly reminiscent of groundwater tributaries in winter then back to meltwater again in the following spring. Significant unimodal relationships were observed between glacial influence and macroinvertebrate community density, richness, Simpson's diversity, evenness and beta diversity. These relationships suggest that glacial influence can have positive effects on biodiversity where glacier meltwater mixes with non-glacial water and habitat diversity is maximised. Regulationinduced flow pulses led to inconsistent responses amongst macroinvertebrates, with no significant effects in summer 2008 but increased density and decreased taxonomic richness in 2009. Furthermore, macroinvertebrate community composition was not affected significantly by reservoir releases despite significant increases in water temperature and discharge at these times. The effects of alpine river management for hydropower production on macroinvertebrate communities in this river system appear to be relatively minor, but further studies need to be undertaken in other alpine locations to assess the generality of this finding
    corecore