629 research outputs found

    The geometry of extended null supersymmetry in M-theory

    Full text link
    For supersymmetric spacetimes in eleven dimensions admitting a null Killing spinor, a set of explicit necessary and sufficient conditions for the existence of any number of arbitrary additional Killing spinors is derived. The necessary and sufficient conditions are comprised of algebraic relationships, linear in the spinorial components, between the spinorial components and their first derivatives, and the components of the spin connection and four-form. The integrability conditions for the Killing spinor equation are also analysed in detail, to determine which components of the field equations are implied by arbitrary additional supersymmetries and the four-form Bianchi identity. This provides a complete formalism for the systematic and exhaustive investigation of all spacetimes with extended null supersymmetry in eleven dimensions. The formalism is employed to show that the general bosonic solution of eleven dimensional supergravity admitting a G2G_2 structure defined by four Killing spinors is either locally the direct product of R1,3\mathbb{R}^{1,3} with a seven-manifold of G2G_2 holonomy, or locally the Freund-Rubin direct product of AdS4AdS_4 with a seven-manifold of weak G2G_2 holonomy. In addition, all supersymmetric spacetimes admitting a (G2R7)×R2(G_2\ltimes\mathbb{R}^7)\times\mathbb{R}^2 structure are classified.Comment: 36 pages, latex; v2, section classifying all spacetimes admitting a (G2R7)×R2(G_2\ltimes\mathbb{R}^7)\times\mathbb{R}^2 structure included; v3, typos corrected. Final version to appear in Phys.Rev.

    Calibrated Entanglement Entropy

    Get PDF
    The Ryu-Takayanagi prescription reduces the problem of calculating entanglement entropy in CFTs to the determination of minimal surfaces in a dual anti-de Sitter geometry. For 3D gravity theories and BTZ black holes, we identify the minimal surfaces as special Lagrangian cycles calibrated by the real part of the holomorphic one-form of a spacelike hypersurface. We show that (generalised) calibrations provide a unified way to determine holographic entanglement entropy from minimal surfaces, which is applicable to warped AdS3_3 geometries. We briefly discuss generalisations to higher dimensions.Comment: v1 22 pages, 1 figure; v2 appendix improved and moved into the body to show the application of calibrations to find minimal surfaces in warped AdS, matches published versio

    Mapping the G-structures and supersymmetric vacua of five-dimensional N=4 supergravity

    Get PDF
    We classify the supersymmetric vacua of N=4, d=5 supergravity in terms of G-structures. We identify three classes of solutions: with R^3, SU(2) and generic SO(4) structure. Using the Killing spinor equations, we fully characterize the first two classes and partially solve the latter. With the N=4 graviton multiplet decomposed in terms of N=2 multiplets: the graviton, vector and gravitino multiplets, we obtain new supersymmetric solutions corresponding to turning on fields in the gravitino multiplet. These vacua are described in terms of an SO(5) vector sigma-model coupled with gravity, in three or four dimensions. A new feature of these N=4 vacua, which is not seen from an N=2 point of view, is the possibility for preserving more exotic fractions of supersymmetry. We give a few concrete examples of these new supersymmetric (albeit singular) solutions. Additionally, we show how by truncating the N=4, d=5 set of fields to minimal supergravity coupled with one vector multiplet we recover the known two-charge solutions.Comment: 31 pages, late

    M-Horizons

    Full text link
    We solve the Killing spinor equations and determine the near horizon geometries of M-theory that preserve at least one supersymmetry. The M-horizon spatial sections are 9-dimensional manifolds with a Spin(7) structure restricted by geometric constraints which we give explicitly. We also provide an alternative characterization of the solutions of the Killing spinor equation, utilizing the compactness of the horizon section and the field equations, by proving a Lichnerowicz type of theorem which implies that the zero modes of a Dirac operator coupled to 4-form fluxes are Killing spinors. We use this, and the maximum principle, to solve the field equations of the theory for some special cases and present some examples.Comment: 36 pages, latex. Reference added, minor typos correcte

    Brane Solitons for G_2 Structures in Eleven-Dimensional Supergravity Re-Visited

    Full text link
    We investigate the four-dimensional supergravity theory obtained from the compactification of eleven-dimensional supergravity on a smooth manifold of G_2 holonomy. We give a new derivation for the Kaehler potential associated with the scalar kinetic term of the N=1 four-dimensional theory. We then examine some solutions of the four-dimensional theory which arise from wrapped M-branes.Comment: 11 Pages, Latex, references adde

    Pressure-Induced Rotational Symmetry Breaking in URu2_2Si2_2

    Full text link
    Phase transitions and symmetry are intimately linked. Melting of ice, for example, restores translation invariance. The mysterious hidden order (HO) phase of URu2_2Si2_2 has, despite relentless research efforts, kept its symmetry breaking element intangible. Here we present a high-resolution x-ray diffraction study of the URu2_2Si2_2 crystal structure as a function of hydrostatic pressure. Below a critical pressure threshold pc3p_c\approx3 kbar, no tetragonal lattice symmetry breaking is observed even below the HO transition THO=17.5T_{HO}=17.5 K. For p>pcp>p_c, however, a pressure-induced rotational symmetry breaking is identified with an onset temperatures TOR100T_{OR}\sim 100 K. The emergence of an orthorhombic phase is found and discussed in terms of an electronic nematic order that appears unrelated to the HO, but with possible relevance for the pressure-induced antiferromagnetic (AF) phase. Existing theories describe the HO and AF phases through an adiabatic continuity of a complex order parameter. Since none of these theories predicts a pressure-induced nematic order, our finding adds an additional symmetry breaking element to this long-standing problem.Comment: 6 pages, 4 figures and supplemental material

    Probing partially localized supergravity background of fundamental string ending on Dp-brane

    Get PDF
    We study the dynamics of the probe fundamental string in the field background of the partially localized supergravity solution for the fundamental string ending on Dp-brane. We separately analyze the probe dynamics for its motion along the worldvolume direction and the transverse direction of the source Dp-brane. We compare the dynamics of the probe along the Dp-brane worldvolume direction to the BIon dynamics.Comment: 20 pages, LaTeX, revised version to appear in Phys. Rev.

    A deformation of AdS_5 x S^5

    Full text link
    We analyse a one parameter family of supersymmetric solutions of type IIB supergravity that includes AdS_5 x S^5. For small values of the parameter the solutions are causally well-behaved, but beyond a critical value closed timelike curves (CTC's) appear. The solutions are holographically dual to N=4 supersymmetric Yang-Mills theory on a non-conformally flat background with non-vanishing R-currents. We compute the holographic energy-momentum tensor for the spacetime and show that it remains finite even when the CTC's appear. The solutions, as well as the uplift of some recently discovered AdS_5 black hole solutions, are shown to preserve precisely two supersymmetries.Comment: 16 pages, v2: typos corrected and references adde

    Equal charge black holes and seven dimensional gauged supergravity

    Full text link
    We present various supergravity black holes of different dimensions with some U(1) charges set equal in a simple, common form. Black hole solutions of seven dimensional U(1)^2 gauged supergravity with three independent angular momenta and two equal U(1) charges are obtained. We investigate the thermodynamics and the BPS limit of this solution, and find that there are rotating supersymmetric black holes without naked closed timelike curves. There are also supersymmetric topological soliton solutions without naked closed timelike curves that have a smooth geometry.Comment: 24 pages; v2, v3: minor change

    Bubbling AdS Black Holes

    Get PDF
    We explore the non-BPS analog of `AdS bubbles', which are regular spherically symmetric 1/2 BPS geometries in type IIB supergravity. They have regular horizons and can be thought of as bubbling generalizations of non-extremal AdS black hole solutions in five-dimensional gauged supergravity. Due to the appearance of the Heun equation even at the linearized level, various approximation and numerical methods are needed in order to extract information about this system. We study how the vacuum expectation value and mass of a particular dimension two chiral primary operator depend on the temperature and chemical potential of the thermal Yang-Mills theory. In addition, the mass of the bubbling AdS black holes is computed. As is shown numerically, there are also non-BPS solitonic bubbles which are completely regular and arise from continuous deformations of BPS AdS bubbles.Comment: 37 pages, 2 figure
    corecore