7,490 research outputs found

    Instability of the symmetric Couette-flow in a granular gas: hydrodynamic field profiles and transport

    Full text link
    We investigate the inelastic hard disk gas sheared by two parallel bumpy walls (Couette-flow). In our molecular dynamic simulations we found a sensitivity to the asymmetries of the initial condition of the particle places and velocities and an asymmetric stationary state, where the deviation from (anti)symmetric hydrodynamic fields is stronger as the normal restitution coefficient decreases. For the better understanding of this sensitivity we carried out a linear stability analysis of the former kinetic theoretical solution [Jenkins and Richman: J. Fluid. Mech. {\bf 171} (1986)] and found it to be unstable. The effect of this asymmetry on the self-diffusion coefficient is also discussed.Comment: 9 pages RevTeX, 14 postscript figures, sent to Phys. Rev.

    The conservation status of the world’s freshwater molluscs

    Get PDF
    With the biodiversity crisis continuing unchecked, we need to establish levels and drivers of extinction risk, and reassessments over time, to effectively allocate conservation resources and track progress towards global conservation targets. Given that threat appears particularly high in freshwaters, we assessed the extinction risk of 1428 randomly selected freshwater molluscs using the IUCN Red List Categories and Criteria, as part of the Sampled Red List Index project. We show that close to one-third of species in our sample are estimated to be threatened with extinction, with highest levels of threat in the Nearctic, Palearctic and Australasia and among gastropods. Threat levels were higher in lotic than lentic systems. Pollution (chemical and physical) and the modification of natural systems (e.g. through damming and water abstraction) were the most frequently reported threats to freshwater molluscs, with some regional variation. Given that we found little spatial congruence between species richness patterns of freshwater molluscs and other freshwater taxa, apart from crayfish, new additional conservation priority areas emerged from our study. We discuss the implications of our findings for freshwater mollusc conservation, the adequacy of a sampled approach and important next steps to estimate trends in freshwater mollusc extinction risk over time

    Long distance cuγc \to u \gamma effects in weak radiative decays of D-mesons

    Full text link
    We present a detailed analysis of the DVγD \to V \gamma transitions, using a model which combines heavy quark effective theory and the chiral Lagrangian approach and includes symmetry breaking. We notice that in addition to the previously considered s - channel annihilation and t - channel W - exchange, there is a long distance penguin - like cuγ c \to u \gamma contribution in the t - channel of Cabibbo - suppressed modes. Its magnitude is determined by the size of symmetry breaking which we calculate with a vector dominance approach. Although smaller in magnitude, the penguin - like contribution would lead to sizeable effects in case of cancellations among the other contributions to the amplitude. Thus, it may invalidate suggested tests for beyond the standard model effects in these decays. We also indicate the range of expectations for the branching ratios of various DVγD \to V \gamma modes.Comment: 28 pages, Latex, 2 Figure

    Semileptonic B decays to excited charmed mesons

    Get PDF
    Exclusive semileptonic B decays into excited charmed mesons are investigated at order ΛQCD/mQ\Lambda_{QCD}/m_Q in the heavy quark effective theory. Differential decay rates for each helicity state of the four lightest excited DD mesons (D1D_1, D2D_2^*, D0D_0^*, and D1D_1^*) are examined. At zero recoil, ΛQCD/mQ\Lambda_{QCD}/m_Q corrections to the matrix elements of the weak currents can be written in terms of the leading Isgur-Wise functions for the corresponding transition and meson mass splittings. A model independent prediction is found for the slope parameter of the decay rate into helicity zero D1D_1 at zero recoil. The differential decay rates are predicted, including ΛQCD/mQ\Lambda_{QCD}/m_Q corrections with some model dependence away from zero recoil and including order αs\alpha_s corrections. Ratios of various exclusive branching ratios are computed. Matrix elements of the weak currents between BB mesons and other excited charmed mesons are discussed at zero recoil to order ΛQCD/mQ\Lambda_{QCD}/m_Q. These amplitudes vanish at leading order, and can be written at order ΛQCD/mQ\Lambda_{QCD}/m_Q in terms of local matrix elements. Applications to BB decay sum rules and factorization are presented.Comment: 39 pages revtex including 10 figures, uses epsf. Substantial improvements throughout the pape

    Multiple time scales in cataclysmic binaries. The low-field magnetic dwarf nova DO Draconis

    Full text link
    We study the variability of the cataclysmic variable DO Dra, on time-scales of between minutes and decades. The characteristic decay time dt/dm=0.902(3) days/mag was estimated from our 3 nights of CCD R observations. The quiescent data show a photometric wave with a cycle about 303(15)d. We analyzed the profile of the composite (or mean) outburst. We discovered however, that a variety of different outburst heights and durations had occurred, contrary to theoretical predictions. With increasing maximum brightness, we find that the decay time also increases; this is in contrast to the model predictions, which indicate that outbursts should have a constant shape. This is interpreted as representing the presence of outburst-to-outburst variability of the magnetospheric radius. A presence of a number of missed weak narrow outbursts is predicted from this statistical relationship. A new type of variability is detected, during 3 subsequent nights in 2007: periodic (during one nightly run) oscillations with rapidly-decreasing frequency from 86 to 47 cycles/day and a semi-amplitude increasing from 0.06 to 0. 10, during a monotonic brightness increase from 14. 27 to 14. 13. This phenomenon was observed only during an unusually prolonged event of about 1 mag brightening in 2007 (lasting till autumn), during which no (expected) outburst was detected. We refer to this behaviour as to the transient periodic oscillations (TPO). To study this new and interesting phenomenon, new regular photometric and spectral (in a target of opportunity mode) observations are required.Comment: 12pages, 8figures, accepted in Astronomy and Astrophysic

    First normal stress difference and crystallization in a dense sheared granular fluid

    Full text link
    The first normal stress difference (N1{\mathcal N}_1) and the microstructure in a dense sheared granular fluid of smooth inelastic hard-disks are probed using event-driven simulations. While the anisotropy in the second moment of fluctuation velocity, which is a Burnett-order effect, is known to be the progenitor of normal stress differences in {\it dilute} granular fluids, we show here that the collisional anisotropies are responsible for the normal stress behaviour in the {\it dense} limit. As in the elastic hard-sphere fluids, N1{\mathcal N}_1 remains {\it positive} (if the stress is defined in the {\it compressive} sense) for dilute and moderately dense flows, but becomes {\it negative} above a critical density, depending on the restitution coefficient. This sign-reversal of N1{\mathcal N}_1 occurs due to the {\it microstructural} reorganization of the particles, which can be correlated with a preferred value of the {\it average} collision angle θav=π/4±π/2\theta_{av}=\pi/4 \pm \pi/2 in the direction opposing the shear. We also report on the shear-induced {\it crystal}-formation, signalling the onset of fluid-solid coexistence in dense granular fluids. Different approaches to take into account the normal stress differences are discussed in the framework of the relaxation-type rheological models.Comment: 21 pages, 13 figure

    Adjacent thoracic lymph node metastases originating from two separate primary cancers: case report

    Get PDF
    Reported is an unusual case of adjacent thoracic lymph nodes demonstrating metastases from two different primary malignancies. A 51 year-old woman with a previous history of bilateral breast cancer underwent a radical gastro-oesophagectomy for adenocarcinoma of the lower third of the oesophagus. The resection specimen demonstrated breast and oesophageal metastases in adjacent thoracic lymph nodes. Mechanisms for this phenomenon, including the known local immune suppression on lymphoid cells by oesophageal carcinoma cells, are discussed

    Hydrodynamic theory for granular gases

    Full text link
    A granular gas subjected to a permanent injection of energy is described by means of hydrodynamic equations derived from a moment expansion method. The method uses as reference function not a Maxwellian distribution fMf_{\sf M} but a distribution f0=ΦfMf_0 = \Phi f_{\sf M}, such that Φ\Phi adds a fourth cumulant κ\kappa to the velocity distribution. The formalism is applied to a stationary conductive case showing that the theory fits extraordinarily well the results coming from our molecular dynamic simulations once we determine κ\kappa as a function of the inelasticity of the particle-particle collisions. The shape of κ\kappa is independent of the size NN of the system.Comment: 10 pages, 9 figures, more about our research in http://www.cec.uchile.cl/cinetica

    A stochastic model for heart rate fluctuations

    Full text link
    Normal human heart rate shows complex fluctuations in time, which is natural, since heart rate is controlled by a large number of different feedback control loops. These unpredictable fluctuations have been shown to display fractal dynamics, long-term correlations, and 1/f noise. These characterizations are statistical and they have been widely studied and used, but much less is known about the detailed time evolution (dynamics) of the heart rate control mechanism. Here we show that a simple one-dimensional Langevin-type stochastic difference equation can accurately model the heart rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical to Gaussian noise, and both parts can be directly determined from the measured heart rate data. Studies of 27 healthy subjects reveal that in most cases the deterministic part has a form typically seen in bistable systems: there are two stable fixed points and one unstable one.Comment: 8 pages in PDF, Revtex style. Added more dat
    corecore