914 research outputs found

    Domain Formation in v=2/3 Fractional Quantum Hall Systems

    Full text link
    We study the domain formation in the v=2/3 fractional quantum Hall systems basing on the density matrix renormalization group (DMRG) analysis. The ground-state energy and the pair correlation functions are calculated for various spin polarizations. The results confirm the domain formation in partially spin polarized states, but the presence of the domain wall increases the energy of partially spin polarized states and the ground state is either spin unpolarized state or fully spin polarized state depending on the Zeeman energy. We expect coupling with external degrees of freedom such as nuclear spins is important to reduce the energy of partially spin polarized state.Comment: 7 pages, submitted to J. Phys. Soc. Jp

    Observation of exchange Coulomb interactions in the quantum Hall state at nu=3

    Full text link
    Coulomb exchange interactions of electrons in the nu=3 quantum Hall state are determined from two inter-Landau level spin-flip excitations measured by resonant inelastic light scattering. The two coupled collective excitations are linked to inter-Landau level spin-flip transitions arising from the N=0 and N=1 Landau levels. The strong repulsion between the two spin-flip modes in the long-wave limit is clearly manifested in spectra displaying Coulomb exchange contributions that are comparable to the exchange energy for the quantum Hall state at nu=1. Theoretical calculations within the Hartree-Fock approximation are in a good agreement with measured energies of spin-flip collective excitations.Comment: 5 pages, 3 figures, to appear in PRB Rapid Communication

    Temperature dependence of spin polarizations at higher Landau Levels

    Full text link
    We report our results on temperature dependence of spin polarizations at ν=1\nu=1 in the lowest as well as in the next higher Landau level that compare well with recent experimental results. At ν=3\nu=3, except having a much smaller magnitude the behavior of spin polarization is not much influenced by higher Landau levels. In sharp contrast, for filling factor ν=83\nu=\frac83 we predict that unlike the case of ν=23\nu=\frac23 the system remains fully spin polarized even at vanishingly small Zeeman energies.Comment: 4 pages, REVTEX, and 3 .ps files, To be published in Physical Review Letter

    Effect of in-plane magnetic field on the photoluminescence spectrum of modulation-doped quantum wells and heterojunctions

    Full text link
    The photoluminescence (PL) spectrum of modulation-doped GaAs/AlGaAs quantum wells (MDQW) and heterojunctions (HJ) is studied under a magnetic field (B∥B_{\|}) applied parallel to the two-dimensional electron gas (2DEG) layer. The effect of B∥B_{\|} strongly depends on the electron-hole separation (dehd_{eh}), and we revealed remarkable B∥B_{\|}-induced modifications of the PL spectra in both types of heterostructures. A model considering the direct optical transitions between the conduction and valence subband that are shifted in k-space under B∥B_{\|}, accounts qualitatively for the observed spectral modifications. In the HJs, the PL intensity of the bulk excitons is strongly reduced relatively to that of the 2DEG with increasing B∥B_{\|}. This means that the distance between the photoholes and the 2DEG decreases with increased B∥B_{\|}, and that free holes are responsible for the hole-2DEG PL.Comment: 6pages, 5figure

    Anisotropy of Magnetoresistance Hysteresis around the ν=2/3\nu=2/3 Quantum Hall State in Tilted Magnetic Field

    Full text link
    We present an anisotropy of the hysteretic transport around the spin transition point at Landau level filling factor ν=2/3\nu=2/3 in tilted magnetic field. When the direction of the in-plane component of the magnetic field B∥B_{\parallel} is normal to the probe current II, a strong hysteretic transport due to the current-induced nuclear spin polarization occurs. When B∥B_{\parallel} is parallel to II, on the other hand, the hysteresis almost disappears. We also demonstrate that the nuclear spin-lattice relaxation rate T1−1T_{1}^{-1} at the transition point increases with decreasing angle between the directions of B∥B_{\parallel} and II. These results suggest that the morphology of electron spin domains around ν=2/3\nu =2/3 is affected by the current direction.Comment: 4 pages, 4 figure

    Spin Polarizations at and about the Lowest Filled Landau Level

    Full text link
    The spin polarization versus temperature at or near a fully filled lowest Landau level is explored for finite-size systems in a periodic rectangular geometry. Our results at ν=1\nu=1 which also include the finite-thickness correction are in good agreement with the experimental results. We also find that the interacting electron system results are in complete agreement with the results of the sigma model, i.e., skyrmions on a torus have a topological charge of Q≥2Q \ge 2 and the Q=1 solution is like a single spin-flip excitation. Our results therefore provide direct evidence for the skyrmionic nature of the excitations at this filling factor.Comment: 4 pages, REVTEX, and 4 .ps files, To be published in Europhysics Letter

    Room-temperature quantum oscillations of static magnetic susceptibility of silicon-carbide epitaxial layers grown on a silicon substrate by the method of the coordinated substitution of atoms

    Full text link
    The article presents the results of measurement and analysis of the field dependences of the static magnetic susceptibility of thin epitaxial silicon carbide films grown on the (110) surface of single-crystal silicon by the method of the coordinated substitution of atoms. In weak magnetic fields, the occurrence of two quantum effects at room temperature was experimentally found: the hysteresis of the static magnetic susceptibility and, in the field dependences, quantum Aharonov-Bohm oscillations of the static magnetic susceptibility. The simultaneous occurrence of these effects is a consequence of two- and one-particle interference of charge carriers (two-dimensional holes) on microdefects consisting of dipole centers with negative correlation energy (negative-U dipole centers).Comment: 8 pages, 2 figure
    • …
    corecore