55 research outputs found

    Random-phase Approximation Treatment Of Edge Magnetoplasmons: Edge-state Screening And Nonlocality

    Full text link
    A random-phase approximation (RPA) treatment of edge magnetoplasmons (EMP) is presented for strong magnetic fields, low temperatures, and integer filling factors \nu. It is valid for negligible dissipation and lateral confining potentials smooth on the scale of the magnetic length \ell_{0} but sufficiently steep that the Landau-level (LL) flattening can be neglected. LL coupling, screening by edge states, and nonlocal contributions to the current density are taken into account. In addition to the fundamental mode with typical dispersion relation \omega\sim q_x \ln(q_{x}), fundamental modes with {\it acoustic} dispersion relation \omega\sim q_x are obtained for \nu>2. For \nu=1,2 a {\bf dipole} mode exists, with dispersion relation \omega\sim q_x^3, that is directly related to nonlocal responses.Comment: Text 12 pages in Latex/Revtex format, 4 Postscript figure

    Genes That Influence Swarming Motility and Biofilm Formation in Variovorax paradoxus EPS

    Get PDF
    Variovorax paradoxus is an aerobic soil bacterium associated with important biodegradative processes in nature. We use V. paradoxus EPS to study multicellular behaviors on surfaces.We recovered flanking sequence from 123 clones in a Tn5 mutant library, with insertions in 29 different genes, selected based on observed surface behavior phenotypes. We identified three genes, Varpa_4665, Varpa_4680, and Varpa_5900, for further examination. These genes were cloned into pBBR1MCS2 and used to complement the insertion mutants. We also analyzed expression of Varpa_4680 and Varpa_5900 under different growth conditions by qPCR.The 29 genes we identified had diverse predicted functions, many in exopolysaccharide synthesis. Varpa_4680, the most commonly recovered insertion site, encodes a putative N-acetyl-L-fucosamine transferase similar to WbuB. Expression of this gene in trans complemented the mutant fully. Several unique insertions were identified in Varpa_5900, which is one of three predicted pilY1 homologs in the EPS genome. No insertions in the two other putative pilY1 homologs present in the genome were identified. Expression of Varpa_5900 altered the structure of the wild type swarm, as did disruption of the chromosomal gene. The swarming phenotype was complemented by expression of Varpa_5900 from a plasmid, but biofilm formation was not restored. Both Varpa_4680 and Varpa_5900 transcripts were downregulated in biofilms and upregulated during swarming when compared to log phase culture. We identified a putative two component system (Varpa_4664-4665) encoding a response regulator (shkR) and a sensor histidine kinase (shkS), respectively. Biofilm formation increased and swarming was strongly delayed in the Varpa_4665 (shkS) mutant. Complementation of shkS restored the biofilm phenotype but swarming was still delayed. Expression of shkR in trans suppressed biofilm formation in either genetic background, and partially restored swarming in the mutant.The data presented here point to complex regulation of these surface behaviors

    A Novel Signaling Network Essential for Regulating Pseudomonas aeruginosa Biofilm Development

    Get PDF
    The important human pathogen Pseudomonas aeruginosa has been linked to numerous biofilm-related chronic infections. Here, we demonstrate that biofilm formation following the transition to the surface attached lifestyle is regulated by three previously undescribed two-component systems: BfiSR (PA4196-4197) harboring an RpoD-like domain, an OmpR-like BfmSR (PA4101-4102), and MifSR (PA5511-5512) belonging to the family of NtrC-like transcriptional regulators. These two-component systems become sequentially phosphorylated during biofilm formation. Inactivation of bfiS, bfmR, and mifR arrested biofilm formation at the transition to the irreversible attachment, maturation-1 and -2 stages, respectively, as indicated by analyses of biofilm architecture, and protein and phosphoprotein patterns. Moreover, discontinuation of bfiS, bfmR, and mifR expression in established biofilms resulted in the collapse of biofilms to an earlier developmental stage, indicating a requirement for these regulatory systems for the development and maintenance of normal biofilm architecture. Interestingly, inactivation did not affect planktonic growth, motility, polysaccharide production, or initial attachment. Further, we demonstrate the interdependency of this two-component systems network with GacS (PA0928), which was found to play a dual role in biofilm formation. This work describes a novel signal transduction network regulating committed biofilm developmental steps following attachment, in which phosphorelays and two sigma factor-dependent response regulators appear to be key components of the regulatory machinery that coordinates gene expression during P. aeruginosa biofilm development in response to environmental cues

    Characterization of Salmonella Type III Secretion Hyper-Activity Which Results in Biofilm-Like Cell Aggregation

    Get PDF
    We have previously reported the cloning of the Salmonella enterica serovar Typhimurium SPI-1 secretion system and the use of this clone to functionally complement a ΔSPI-1 strain for type III secretion activity. In the current study, we discovered that S. Typhimurium cultures containing cloned SPI-1 display an adherent biofilm and cell clumps in the media. This phenotype was associated with hyper-expression of SPI-1 type III secretion functions. The biofilm and cell clumps were associated with copious amounts of secreted SPI-1 protein substrates SipA, SipB, SipC, SopB, SopE, and SptP. We used a C-terminally FLAG-tagged SipA protein to further demonstrate SPI-1 substrate association with the cell aggregates using fluorescence microscopy and immunogold electron microscopy. Different S. Typhimurium backgrounds and both flagellated and nonflagellated strains displayed the biofilm phenotype. Mutations in genes essential for known bacterial biofilm pathways (bcsA, csgBA, bapA) did not affect the biofilms formed here indicating that this phenomenon is independent of established biofilm mechanisms. The SPI-1-mediated biofilm was able to massively recruit heterologous non-biofilm forming bacteria into the adherent cell community. The results indicate a bacterial aggregation phenotype mediated by elevated SPI-1 type III secretion activity with applications for engineered biofilm formation, protein purification strategies, and antigen display

    Extracellular DNA Chelates Cations and Induces Antibiotic Resistance in Pseudomonas aeruginosa Biofilms

    Get PDF
    Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P. aeruginosa biofilms. At physiologically relevant concentrations, extracellular DNA has antimicrobial activity, causing cell lysis by chelating cations that stabilize lipopolysaccharide (LPS) and the outer membrane (OM). DNA-mediated killing occurred within minutes, as a result of perturbation of both the outer and inner membrane (IM) and the release of cytoplasmic contents, including genomic DNA. Sub-inhibitory concentrations of DNA created a cation-limited environment that resulted in induction of the PhoPQ- and PmrAB-regulated cationic antimicrobial peptide resistance operon PA3552–PA3559 in P. aeruginosa. Furthermore, DNA-induced expression of this operon resulted in up to 2560-fold increased resistance to cationic antimicrobial peptides and 640-fold increased resistance to aminoglycosides, but had no effect on β-lactam and fluoroquinolone resistance. Thus, the presence of extracellular DNA in the biofilm matrix contributes to cation gradients, genomic DNA release and inducible antibiotic resistance. DNA-rich environments, including biofilms and other infection sites like the CF lung, are likely the in vivo environments where extracellular pathogens such as P. aeruginosa encounter cation limitation

    Muon Collider Forum report

    Get PDF
    A multi-TeV muon collider offers a spectacular opportunity in the direct exploration of the energy frontier. Offering a combination of unprecedented energy collisions in a comparatively clean leptonic environment, a high energy muon collider has the unique potential to provide both precision measurements and the highest energy reach in one machine that cannot be paralleled by any currently available technology. The topic generated a lot of excitement in Snowmass meetings and continues to attract a large number of supporters, including many from the early career community. In light of this very strong interest within the US particle physics community, Snowmass Energy, Theory and Accelerator Frontiers created a cross-frontier Muon Collider Forum in November of 2020. The Forum has been meeting on a monthly basis and organized several topical workshops dedicated to physics, accelerator technology, and detector R&D. Findings of the Forum are summarized in this report

    Towards a muon collider

    Get PDF

    Why do microorganisms produce rhamnolipids?

    Full text link

    Doctor F.P. Haass and the police hospital as the first emergency hospital in Moscow

    Get PDF
    A brief description and the work field of the doctor and humanist F. P. Haass (Friedrich Joseph Haass), who came to Moscow as a family doctor and gave all his knowledge and medical art to his new homeland, is provided. His path is shown from a family practice to the organization of Moscow healthcare, the chief doctor and hospital builder, the organizer of prison medicine, the great philanthropist and humanist who cared for the poor and destitute. His sequence in the implementation of the idea of the need to organize the provision of ambulance and emergency medical care for the poor who were injured in the streets, frostbite, with fever, bitten by animals, etc, is shown. The work area of the Police Hospital, the characteristics of doctors — the main followers and successors of the work of F. P. Haass, a combination of their medical and scientific activities, contribution to medical science are presented. The history of the creation of the first Pasteur station in Russia to provide emergency care for bites of rabid animals is reflected. The role and merits of S. V. Puchkov in preserving the humanistic traditions of Dr. F. P. Haass in the Aleksandrovskaya (Police) Hospital, his achievements in preserving and perpetuating the memory of F. P. Haass, the opening of the monument to F. P. Haass at Maly Kazenny Lane, a large public activity of S. V. Puchkov in Moscow are shown. The importance of family traditions in the upbringing of dedicated medical service, which were followed by S. V. Puchkov’s eldest son, A. S. Puchkov, is presented. Graduate of the Moscow University, A. S. Puchkov (“doctor with honors”) continued the work of F. P. Haass and his father, proved to be a brilliant organizer and became the creator of the modern emergency care in Moscow that F. P. Haass had dreamed about
    corecore