179 research outputs found
The negative magnetic pressure effect in stratified turbulence
While the rising flux tube paradigm is an elegant theory, its basic
assumptions, thin flux tubes at the bottom of the convection zone with field
strengths two orders of magnitude above equipartition, remain numerically
unverified at best. As such, in recent years the idea of a formation of
sunspots near the top of the convection zone has generated some interest. The
presence of turbulence can strongly enhance diffusive transport mechanisms,
leading to an effective transport coefficient formalism in the mean-field
formulation. The question is what happens to these coefficients when the
turbulence becomes anisotropic due to a strong large-scale mean magnetic field.
It has been noted in the past that this anisotropy can also lead to highly
non-diffusive behaviour. In the present work we investigate the formation of
large-scale magnetic structures as a result of a negative contribution of
turbulence to the large-scale effective magnetic pressure in the presence of
stratification. In direct numerical simulations of forced turbulence in a
stratified box, we verify the existence of this effect. This phenomenon can
cause formation of large-scale magnetic structures even from initially uniform
large-scale magnetic field.Comment: 5 pages, 2 figures, submitted conference proceedings IAU symposium
273 "Physics of Sun and Star Spots
The dynamics of Wolf numbers based on nonlinear dynamo with magnetic helicity: comparisons with observations
We investigate the dynamics of solar activity using a nonlinear
one-dimensional dynamo model and a phenomenological equation for the evolution
of Wolf numbers. This system of equations is solved numerically. We take into
account the algebraic and dynamic nonlinearities of the alpha effect. The
dynamic nonlinearity is related to the evolution of a small-scale magnetic
helicity, and it leads to a complicated behavior of solar activity. The
evolution equation for the Wolf number is based on a mechanism of formation of
magnetic spots as a result of the negative effective magnetic pressure
instability (NEMPI). This phenomenon was predicted 25 years ago and has been
investigated intensively in recent years through direct numerical simulations
and mean-field simulations. The evolution equation for the Wolf number includes
the production and decay of sunspots. Comparison between the results of
numerical simulations and observational data of Wolf numbers shows a 70 %
correlation over all intervals of observation (about 270 years). We determine
the dependence of the maximum value of the Wolf number versus the period of the
cycle and the asymmetry of the solar cycles versus the amplitude of the cycle.
These dependencies are in good agreement with observations.Comment: 9 pages, 13 figures, final revised paper for MNRA
Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures
We study a large-scale instability in a sheared nonhelical turbulence that
causes generation of large-scale vorticity. Three types of the background
large-scale flows are considered, i.e., the Couette and Poiseuille flows in a
small-scale homogeneous turbulence, and the "log-linear" velocity shear in an
inhomogeneous turbulence. It is known that laminar plane Couette flow and
antisymmetric mode of laminar plane Poiseuille flow are stable with respect to
small perturbations for any Reynolds numbers. We demonstrate that in a
small-scale turbulence under certain conditions the large-scale Couette and
Poiseuille flows are unstable due to the large-scale instability. This
instability causes formation of large-scale vortical structures stretched along
the mean sheared velocity. The growth rate of the large-scale instability for
the "log-linear" velocity shear is much larger than that for the Couette and
Poiseuille background flows. We have found a turbulent analogue of the
Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of
excitation of turbulent Tollmien-Schlichting waves is associated with a
combined effect of the turbulent Reynolds stress-induced generation of
perturbations of the mean vorticity and the background sheared motions. These
waves can be excited even in a plane Couette flow imposed on a small-scale
turbulence when perturbations of mean velocity depend on three spatial
coordinates. The energy of these waves is supplied by the small-scale sheared
turbulence.Comment: 12 pages, 14 figures, Phys. Rev. E, in pres
Nonlinear Turbulent Magnetic Diffusion and Mean-Field Dynamo
The nonlinear coefficients defining the mean electromotive force (i.e., the
nonlinear turbulent magnetic diffusion, the nonlinear effective velocity, the
nonlinear kappa-tensor, etc.) are calculated for an anisotropic turbulence. A
particular case of an anisotropic background turbulence (i.e., the turbulence
with zero mean magnetic field) with one preferential direction is considered.
It is shown that the toroidal and poloidal magnetic fields have different
nonlinear turbulent magnetic diffusion coefficients. It is demonstrated that
even for a homogeneous turbulence there is a nonlinear effective velocity which
exhibits diamagnetic or paramagnetic properties depending on anisotropy of
turbulence and level of magnetic fluctuations in the background turbulence.
Analysis shows that an anisotropy of turbulence strongly affects the nonlinear
mean electromotive force. Two types of nonlinearities (algebraic and dynamic)
are also discussed. The algebraic nonlinearity implies a nonlinear dependence
of the mean electromotive force on the mean magnetic field. The dynamic
nonlinearity is determined by a differential equation for the magnetic part of
the alpha-effect. It is shown that for the alpha-Omega axisymmetric dynamo the
algebraic nonlinearity alone cannot saturate the dynamo generated mean magnetic
field while the combined effect of the algebraic and dynamic nonlinearities
limits the mean magnetic field growth. Astrophysical applications of the
obtained results are discussed.Comment: 15 pages, REVTEX
Competition of rotation and stratification in flux concentrations
In a strongly stratified turbulent layer, a uniform horizontal magnetic field
can become unstable to spontaneously form local flux concentrations due to a
negative contribution of turbulence to the large-scale (mean-field) magnetic
pressure. This mechanism, called the negative effective magnetic pressure
instability (NEMPI), is of interest in connection with dynamo scenarios where
most of the magnetic field resides in the bulk of the convection zone, and not
at the bottom. Recent work using the mean-field hydromagnetic equations has
shown that NEMPI becomes suppressed at rather low rotation rates with Coriolis
numbers as low as 0.1.}{Here we extend these earlier investigations by studying
the effects of rotation both on the development of NEMPI and on the effective
magnetic pressure. We also quantify the kinetic helicity from direct numerical
simulations (DNS) and compare with earlier work.}{To calculate the rotational
effect on the effective magnetic pressure we consider both DNS and analytical
studies using the approach. To study the effects of rotation on the
development of NEMPI we use both DNS and mean-field calculations of the 3D
hydromagnetic equations in a Cartesian domain.}{We find that the growth rates
of NEMPI from earlier mean-field calculations are well reproduced with DNS,
provided the Coriolis number is below about 0.06. In that case, kinetic and
magnetic helicities are found to be weak. For faster rotation, dynamo action
becomes possible. However, there is an intermediate range of rotation rates
where dynamo action on its own is not yet possible, but the rotational
suppression of NEMPI is being alleviated.}{Production of magnetic flux
concentrations through the suppression of turbulent pressure appears to be
possible only in the upper-most layers of the Sun, where the convective
turnover time is less than 2 hours.}Comment: 13 pages, 13 figures submitted to A&
- …