2 research outputs found

    Protein content in the parental diet affects cold tolerance and antioxidant system state in the offspring Drosophila

    Get PDF
    Dietary nutrients are the key determinants of the lifespan and metabolic health. The content of specific dietary compounds in the parental diet can epigenetically affect the physiological state of the offspring. Here, we studied how variable dietary protein content in the diet of parental generation affects antioxidant capacity of Drosophila melanogaster adult offspring. The dry yeast concentration ranging from 0.25% to 15% in the parental diet was the only variable in the experiments, whereas subsequent generation was kept on a diet of the same composition. We found, that flies fed with yeast-restricted (0.25%) diet produced F1 male flies with a higher cold tolerance and higher activity of the second-line antioxidant enzymes whereas in F1 females no effect of parental diet composition on the cold tolerance, catalase, GST, G6PDH, IDH activity and low thiols content was detected. The results suggest that nutrient-dependent changes of genes expression in the flies of paternal generation differently affect the stress response of males and females of the first-generation offspring

    Nanodelivery of phytobioactive compounds for treating aging-associated disorders

    No full text
    Aging population presents a major challenge for many countries in the world and has made the development of efficient means for healthspan extension a priority task for researchers and clinicians worldwide. Anti-aging properties including antioxidant, anti-inflammatory, anti-tumor, and cardioprotective activities have been reported for various phytobioactive compounds (PBCs) including resveratrol, quercetin, curcumin, catechin, etc. However, the therapeutic potential of orally administered PBCs is limited by their poor stability, bioavailability, and solubility in the gastrointestinal tract. Recently, innovative nanotechnology-based approaches have been developed to improve the bioactivity of PBCs and enhance their potential in preventing and/or treating age-associated disorders, primarily those caused by aging-related chronic inflammation. PBC-loaded nanoparticles designed for oral administration provide many benefits over conventional formulations, including enhanced stability and solubility, prolonged half-life, improved epithelium permeability and bioavailability, enhanced tissue targeting, and minimized side effects. The present review summarizes recent advances in this rapidly developing research area
    corecore