259 research outputs found

    Microbiological removal of engine oils from natural water using plant-derived sorbents

    Get PDF
    The ongoing pollution of water resources with a variety of lubricating oils, the insufficiently developed methods of purification of natural and waste water poses the problem of finding ways to restore the natural qualities of the environment. The authors see a solution to this problem in the wide use of activity of individual associations of oil-oxidizing microorganisms (OOM) in combination with the plant-derived sorbents (buckwheat, oat, wheat and barley husk), which allows deep controlled oxidation of these contaminants down to CO2 and H2O. It was found that the multi-species OOM communities take more active part in biodegradation of mineral, semi-synthetic and synthetic oils, than those with the limited species composition. The growth, development and activity in the oil biodegradation is determined by the nature of the contamination. The population growth maxima lie between 5 and 14 days, and decrease to 2 to 6 hours under the influence of sorbents This affects the oil consumption amount, which is 1.7-3.5 times higher under the influence of the sorbents, and 3-7.2 times higher in the control. The first by the efficiency of water cleaning from lubricating oils by the association of nine species of OOM is barley husk, then buckwheat husk, then oat and wheat husk (laboratory experiment); barley, oat, buckwheat and wheat in field experiments (close to natural water bodies) with the particle size of 0.018 mm and 0.036 and at a concentration of 50 mg/l. An important factor in the intensification of water purification from oil with OOM is the introduction of sorbents (type, combination and ratio of the substrate to the bacteria) in the water body. It was found that the maximum purifying effect (32.2-45.4%) 9-12 days prior to the contact is achieved with the introduction of sorbents and OOM in an amount of 102Β·106-106Β·106 cells/ml, mixed together in the form of a suspension, in contaminated water. This allows achieving a uniform distribution of ingredients that positively affects the biotransformation processes of the contaminants. Upon spraying sorbents on the oil film surface we observe the formation of separate lumps, slowly decomposing and dispersing throughout the area. This negatively affects the immobilization of the OOM cells in sorbents and slows down the process of water purification

    Optimization of industrial steam supply and steam-and-condensate farming of machine building enterprise

    Get PDF
    Β© Published under licence by IOP Publishing Ltd. The article studies efficient control methods of steam condensing economy of the machine building enterprise. There are recommendations about development of complex decisions based on indicators of energy, technical and economic efficiency

    Effect of calcium doping on the anodic behavior of E-AlMgSi (Aldrey) conducting aluminum alloy in NaCl electrolyte medium

    Get PDF
    The design of new materials intended for operation under severe conditions faces the task of rendering the materials corrosion resistant. The practical solution of this task is interrelated with the knowledge of corrosion protection of metals and alloys. The use of conducting aluminum alloys for the manufacture of thin wire may encounter specific problems. This is caused by the insufficient strength of these alloys and a small number of kinks before fracture. Aluminum alloys have been developed in recent years which even in a soft state have strength characteristics that allow them to be used as a conductive material. The E-AlMgSi (Aldrey) aluminum alloy is a well-known conducting alloy. This alloy is a heat-strengthened one, possessing good plasticity and high strength. After appropriate heat treatment this alloy acquires high electrical conductivity. Wires made from this alloy are almost exclusively used for air transmission lines. This work presents data on the corrosion behavior of calcium containing E-AlMgSi (Aldrey) aluminum conducting alloy in 0.03, 0.3 and 3.0% NaCl electrolyte medium. The anodic behavior of the alloy has been studied using a potentiostatic technique with a PI-50-1.1 potentiostat at a 2 mV/s potential sweep rate. Calcium doping of the E-AlMgSi (Aldrey) aluminum alloy increases its corrosion resistance by 15–20%. The corrosion, pitting and repassivation potentials of calcium doped alloys shift toward the positive region. An increase in the sodium chloride electrolyte concentration leads to a decrease in these potentials

    The influence of mineral fillers on mechanical properties of polyvinyl chloride composites

    Get PDF
    The paper reports the investigation results of tensile stress-strain properties of filled PVC composite during static and low cycle testing. The distinctive features of composite mechanical behavior depending on the content of dispersed mineral fillers which are basically industrial waste are established. It is revealed that small filler additives have a strong influence on the structural behavior that manifest itself as their abnormal change depending on the filler content. The experimental data obtained are explained based on the modern ideas about structural morphological model of base polymer structure. Β© IDOSI Publications, 2013

    Reactions of Chlorine Dioxide with Organic Compounds

    Get PDF
    Data on the reactivity of chlorine dioxide with organic compounds from various classes are summarized. Early investigations of the reactions of chlorine dioxide were occurred in aqueous or predominantly aqueous solutions in general, because it used in drinking water treatment and in industry as bleaching agent. However, chlorine dioxide was not used widely as reagent in organic synthesis. In last decades the number of publications on the studying interaction of the chlorine dioxide in organic medium increased. In table presented the rate constants reactions of chlorine dioxide with organic compounds published through 2004. Most of the rate constants were determined spectrophotometrically by decay kinetics of chlorine dioxide at 360 nm. Chlorine dioxide may be used for oxidation of organic compounds, because chlorine dioxide is enough reactive and selective as an oxidant with a wide range of organic compounds based on these reaction rate constants. But the application of chlorine dioxide as reagent in organic synthesis is restrained by the lack of data on the kinetics and mechanism of reactions involving chlorine dioxide, as well as data on the product yields and composition, temperature and solvent effects, and catalysts. The pathways of products formation and probable mechanisms of reactions are discussed in the review

    ВлияниС лития Π½Π° Π°Π½ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ алюминиСвого ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ сплава AlTi0.1 Π² срСдС элСктролита NaCl

    Get PDF
    Aluminum ranks as the fourth most conductive metal, trailing behind silver, copper, and gold in electrical conductivity. Annealed aluminum demonstrates an approximate 62 % conductivity of the International IACS compared to annealed standard copper, which registers 100 % IACS at t = 20 Β°C. Because to its low specific gravity, aluminum exhibits twice the conductivity per unit mass compared to copper, showcasing its potential economic advantage as a material for conducting electricity. For equal conductivity (in terms of length), an aluminum conductor exhibits a cross-sectional area 60 % larger than that of copper, while weighing only 48 % of copper's mass. However, the widespread use of aluminum as a conductor in electrical engineering is often challenging and sometimes unfeasible due to its inherent low mechanical strength. Enhancing this crucial property is achievable through the addition of dopants. However, this approach tends to elevate mechanical strength at the cost of noticeable reductions in electrical conductivity. This study investigates the impact of lithium addition on the anodic behavior of an A5 aluminum conductor alloy, specifically modified with 0.1 wt.% Ti (AlTi0.1 alloy), within a NaCl electrolyte environment. The experiments were conducted utilizing the potentiostatic method in potentiodynamic mode at a potential sweep rate of 2 mV/s. Results indicate that the introduction of lithium to the AlTi0.1 alloy leads to a shift in the potentials of free corrosion, pitting, and repassivation towards positive values. Additionally, the corrosion rate decreases by 10–20 % with the incorporation of 0.01–0.50 wt.% Li. Moreover, varying concentrations of chloride ions in the NaCl electrolyte prompt fluctuations in the corrosion rate of the alloys and a shift in electrochemical potentials towards the negative range.Π‘Ρ€Π΅Π΄ΠΈ всСх извСстных ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² алюминий ΠΏΠΎ элСктропроводности Π·Π°Π½ΠΈΠΌΠ°Π΅Ρ‚ 4-Π΅ мСсто послС сСрСбра, ΠΌΠ΅Π΄ΠΈ ΠΈ Π·ΠΎΠ»ΠΎΡ‚Π°. Π­Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ ΠΎΡ‚ΠΎΠΆΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ алюминия составляСт ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ 62 % IACS ΠΎΡ‚ элСктропроводности ΠΎΡ‚ΠΎΠΆΠΆΠ΅Π½Π½ΠΎΠΉ стандартной ΠΌΠ΅Π΄ΠΈ, которая ΠΏΡ€ΠΈ t = 20 Β°C принимаСтся Π·Π° 100 % IACS. Однако благодаря ΠΌΠ°Π»ΠΎΠΌΡƒ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ вСсу алюминий ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ‚ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ массы Π² 2 Ρ€Π°Π·Π° большСй, Ρ‡Π΅ΠΌ мСдь, Ρ‡Ρ‚ΠΎ Π΄Π°Π΅Ρ‚ Π½Π°ΠΌ прСдставлСниС ΠΎΠ± экономичСской выгодности примСнСния Π΅Π³ΠΎ Π² качСствС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° для ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ². ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΉ проводимости (ΠΎΠ΄Π½Π° ΠΈ Ρ‚Π° ΠΆΠ΅ Π΄Π»ΠΈΠ½Π°) Π°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹ΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΏΠΎΠΏΠ΅Ρ€Π΅Ρ‡Π½ΠΎΠ³ΠΎ сСчСния Π½Π° 60 % большС, Ρ‡Π΅ΠΌ ΠΌΠ΅Π΄Π½Ρ‹ΠΉ, Π° Π΅Π³ΠΎ масса составляСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 48 % ΠΎΡ‚ массы ΠΌΠ΅Π΄ΠΈ. Π’ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв Π² элСктротСхникС использованиС алюминия Π² качСствС ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠ° Π·Π°Ρ‚Ρ€ΡƒΠ΄Π½Π΅Π½ΠΎ, Π° часто ΠΈ просто Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·-Π·Π° Π΅Π³ΠΎ Π½ΠΈΠ·ΠΊΠΎΠΉ мСханичСской прочности. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ этого Π·Π½Π°Ρ‡ΠΈΠΌΠΎΠ³ΠΎ показатСля Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π·Π° счСт ввСдСния Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π΄ΠΎΠ±Π°Π²ΠΎΠΊ. Π’ Ρ‚Π°ΠΊΠΎΠΌ случаС мСханичСская ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ возрастаСт, вызывая, ΠΎΠ΄Π½Π°ΠΊΠΎ, Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎΠ΅ сниТСниС элСктропроводности. Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ исслСдовано влияниС Π΄ΠΎΠ±Π°Π²ΠΊΠΈ лития Π½Π° Π°Π½ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ алюминиСвого ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ сплава ΠΌΠ°Ρ€ΠΊΠΈ А5, ΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ 0,1 мас.% Ti (сплава AlTi0.1), Π² срСдС элСктролита NaCl. ЭкспСримСнты ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ‹ потСнциостатичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π² потСнциодинамичСском Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΏΡ€ΠΈ скорости Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° 2 ΠΌΠ’/с. Показано, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ±Π°Π²ΠΊΠ° лития Π² сплав AlTi0.1 способствуСт ΡΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ² свободной ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ, питтингообразования ΠΈ рСпассивации Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ ΠΏΡ€ΠΈ Π²Π²Π΅Π΄Π΅Π½ΠΈΠΈ 0,01–0,50 мас.% Li сниТаСтся Π½Π° 10–20 %. Π’ зависимости ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ…Π»ΠΎΡ€ΠΈΠ΄-ΠΈΠΎΠ½Π° Π² элСктролитС NaCl ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ рост скорости ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ сплавов ΠΈ смСщСниС элСктрохимичСских ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΠΎΠ² Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ

    ВлияниС Π΄ΠΎΠ±Π°Π²ΠΎΠΊ ΠΊΠ°Π»ΡŒΡ†ΠΈΡ Π½Π° Π°Π½ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ алюминиСвого сплава E-AlMgSi (Π°Π»Π΄Ρ€Π΅ΠΉ), Π² срСдС элСктролита NaCl

    Get PDF
    When creating new materials designed to work in particularly harsh conditions, the task of giving them corrosion resistance arises, the practical solution of which is associated with the level of knowledge in the field of high-temperature oxidation of metals and alloys. When using conductive aluminum alloys for the manufacture of thin wire, for example, winding wire, etc., certain difficulties may arise due to their insufficient strength and a small number of kinks before failure. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductor material. One of the conductive aluminum alloys is the E-AlMgSi alloy (Aldrey), which refers to thermally strengthened alloys. It is characterized by high strength and good ductility. This alloy under appropriate heat treatment acquires high electrical conductivity. The wires made from it are used almost exclusively for overhead power lines.The results of the study of the anodic behavior of the aluminum conductor alloy E-AlMgSi (Aldrey) with calcium, in an electrolyte medium of 0.03; 0.3 and 3.0% NaCl are presented. Corrosion-electrochemical study of alloys was carried out by the potentiostatic method on the PI-5.0-1.1 potentiostat at a potential sweep rate of 2 mV/s. It is shown that alloying the aluminum alloy E-AlMgSi (Aldrey) with calcium increases its corrosion resistance by 20%. The potentials of corrosion, pitting and repassivation of alloys during doping with calcium are shifted to the positive range of values, and from the concentration of sodium chloride in the negative direction of the ordinate axis.ΠŸΡ€ΠΈ создании Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ², ΠΏΡ€Π΅Π΄Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½Ρ‹Ρ… для Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π² особо ТСстких условиях, встаСт Π·Π°Π΄Π°Ρ‡Π° придания ΠΈΠΌ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ стойкости. ΠŸΡ€Π°ΠΊΡ‚ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ связано с ΡƒΡ€ΠΎΠ²Π½Π΅ΠΌ Π·Π½Π°Π½ΠΈΠΉ Π² области ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΠ² ΠΈ сплавов. ΠŸΡ€ΠΈ использовании ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… Π°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹Ρ… сплавов для изготовлСния Ρ‚ΠΎΠ½ΠΊΠΎΠΉ ΠΏΡ€ΠΎΠ²ΠΎΠ»ΠΎΠΊΠΈ ΠΌΠΎΠ³ΡƒΡ‚ Π²ΠΎΠ·Π½ΠΈΠΊΠ½ΡƒΡ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹Π΅ слоТности. Π­Ρ‚ΠΎ связано с ΠΈΡ… нСдостаточной ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ ΠΌΠ°Π»Ρ‹ΠΌ числом ΠΏΠ΅Ρ€Π΅Π³ΠΈΠ±ΠΎΠ² Π΄ΠΎ Ρ€Π°Π·Ρ€ΡƒΡˆΠ΅Π½ΠΈΡ. Π’ послСдниС Π³ΠΎΠ΄Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Ρ‹ Π½ΠΎΠ²Ρ‹Π΅ Π°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹Π΅ сплавы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π² мягком состоянии ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ прочностными характСристиками, Ρ‡Ρ‚ΠΎ позволяСт ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΡ… Π² качСствС ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. Одним ΠΈΠ· извСстных ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²Ρ‹Ρ… сплавов являСтся Π°Π»ΡŽΠΌΠΈΠ½ΠΈΠ΅Π²Ρ‹ΠΉ сплав E-AlMgSi (Π°Π»Π΄Ρ€Π΅ΠΉ). Π­Ρ‚ΠΎΡ‚ сплав относится ΠΊ тСрмоупрочняСмым сплавам. Π”Π°Π½Π½Ρ‹ΠΉ сплав отличаСтся Ρ…ΠΎΡ€ΠΎΡˆΠ΅ΠΉ ΠΏΠ»Π°ΡΡ‚ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ высокой ΠΏΡ€ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ. ΠŸΡ€ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ тСрмичСской ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ сплав ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Ρ‚Π°Π΅Ρ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ ΡΠ»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΎΠ²ΠΎΠ΄Π°, ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· Π½Π΅Π³ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΠΎΡ‡Ρ‚ΠΈ ΠΈΡΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ для Π²ΠΎΠ·Π΄ΡƒΡˆΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ элСктропСрСдач.Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ повСдСния алюминиСвого ΠΏΡ€ΠΎΠ²ΠΎΠ΄Π½ΠΈΠΊΠΎΠ²ΠΎΠ³ΠΎ сплава E-AlMgSi (Π°Π»Π΄Ρ€Π΅ΠΉ) с ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅ΠΌ, Π² срСдС элСктролита 0,03, 0,3 ΠΈ 3,0 % NaCl. ИсслСдованиС Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ повСдСния сплавов ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΈΡΡŒ потСнциостатичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π½Π° потСнциостатС ПИ-50-1.1 ΠΏΡ€ΠΈ скорости Ρ€Π°Π·Π²Π΅Ρ€Ρ‚ΠΊΠΈ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° 2 ΠΌΠ’/с. Π›Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ алюминиСвого сплава E-AlMgSi (Π°Π»Π΄Ρ€Π΅ΠΉ) ΠΊΠ°Π»ΡŒΡ†ΠΈΠ΅ΠΌ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ Π΅Π³ΠΎ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΎΠ½Π½ΡƒΡŽ ΡƒΡΡ‚ΠΎΠΉΡ‡ΠΈΠ²ΠΎΡΡ‚ΡŒ Π½Π° 15β€”20 %. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ, питтингообразования ΠΈ рСпассивации сплавов, содСрТащих ΠΊΠ°Π»ΡŒΡ†ΠΈΠΉ ΡΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. ΠžΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ элСктролита Ρ…Π»ΠΎΡ€ΠΈΠ΄Π° натрия ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ΡΡ

    ΠšΠ˜ΠΠ•Π’Π˜ΠšΠ ΠžΠšΠ˜Π‘Π›Π•ΠΠ˜Π― Π‘ΠŸΠ›ΠΠ’Π АК7М2 + 0,05%Sr, Π›Π•Π“Π˜Π ΠžΠ’ΠΠΠΠžΠ“Πž Π“Π•Π ΠœΠΠΠ˜Π•Πœ

    Get PDF
    There was investigated by means of thermogravimetric method kinetics of oxidation of cutting alloy АК7М2 + 0,05%Sr, germanium alloyed, in air at temperature 773, 798 and 823 K. There was identified that additives until 0,05 wt.% Ge will be reduced oxidation rate, as evidenced by increasing of value of apparent activation energy of oxidation process from 14,7 to 79,8 kJ/mol, which with increasing of Ge content until 1,0 wt.% again decreased to 25,2 kJ/mol. The value of actual velocity of oxidation is changed in the range (4,30Γ·6,00)Β·10–4 kg/(m2Β·c) depending on quantity of alloying component. In products of alloys oxidation together with Ξ³-Al2O3 looked up phases SiO2 and GeO2.ВСрмогравимСтричСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ исслСдована ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° окислСния Ρ‚Π²Π΅Ρ€Π΄ΠΎΠ³ΠΎ сплава АК7М2 + 0,05%Sr, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π³Π΅Ρ€ΠΌΠ°Π½ΠΈΠ΅ΠΌ, Π² атмосфСрС Π²ΠΎΠ·Π΄ΡƒΡ…Π° ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… 773, 798 ΠΈ 823 К. ВыявлСно, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠ±Π°Π²ΠΊΠΈ Π΄ΠΎ 0,05 мас.% Ge ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ окислСния, ΠΎ Ρ‡Π΅ΠΌ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ каТущСйся энСргии Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ процСсса окислСния ΠΎΡ‚ 14,7 Π΄ΠΎ 79,8 ΠΊΠ”ΠΆ/моль, которая с ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ΠΌ содСрТания Ge Π΄ΠΎ 1,0 мас.% снова ΠΏΠ°Π΄Π°Π΅Ρ‚ Π΄ΠΎ 25,2 ΠΊΠ”ΠΆ/моль. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° истинной скорости окислСния мСняСтся Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… (4,30Γ·6,00)Β·10–4 ΠΊΠ³/(ΠΌ2·с Π² зависимости ΠΎΡ‚ количСства Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. Π’ ΠΏΡ€ΠΎΠ΄ΡƒΠΊΡ‚Π°Ρ… окислСния сплавов наряду с Ξ³-Al2O3 Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Ρ‹ Ρ„Π°Π·Ρ‹ SiO2 ΠΈ GeO2

    Π’Π›Π˜Π―ΠΠ˜Π• pH Π‘Π Π•Π”Π« НА ΠΠΠžΠ”ΠΠžΠ• ΠŸΠžΠ’Π•Π”Π•ΠΠ˜Π• Π‘ΠŸΠ›ΠΠ’Π Zn55Al, Π›Π•Π“Π˜Π ΠžΠ’ΠΠΠΠžΠ“Πž Π‘ΠšΠΠΠ”Π˜Π•Πœ

    Get PDF
    The anodic behavior of Zn55Al alloy doped with scandium has been studied. The scandium content dependence of the Zn55Al alloy corrosion potential shows the extreme character. The increase in the chloride ion concentration in the electrolyte reduces the corrosion potential. When doping element content grows in the alloys, pitting and repassivation potentials are shifted to the positive area, and when chloride ion concentration grows, the potentials are shifted to the negative area over the entire range of environment pH. Zn55Al alloy corrosion rate decreases 2–3 times in doping 0,005–0,05 wt.% scandium. Thus the alloys of such composition can be recommended as anode coating for corrosion protection of steel structures, components, and constructions.ИсслСдовано Π°Π½ΠΎΠ΄Π½ΠΎΠ΅ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ сплава Zn55Al, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ скандиСм. УстановлСн ΡΠΊΡΡ‚Ρ€Π΅ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ зависимости ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ этого ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΎΡ‚ содСрТания Π² Π½Π΅ΠΌ Sc ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ…Π»ΠΎΡ€ΠΈΠ΄-ΠΈΠΎΠ½ΠΎΠ² Π² элСктролитС способствуСт ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡŽ ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Π° ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ. ΠŸΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»Ρ‹ питтингообразования ΠΈ рСпассивации с ростом содСрТания Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… элСмСнтов Π² сплавах ΡΠΌΠ΅Ρ‰Π°ΡŽΡ‚ΡΡ Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ, Π° с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Ρ…Π»ΠΎΡ€ΠΈΠ΄-ΠΈΠΎΠ½ΠΎΠ² Π² ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π²ΠΎ всСм ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ рН срСды. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ Zn55Al ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ Π² 2–3 Ρ€Π°Π·Π° ΠΏΡ€ΠΈ Π΄ΠΎΠ±Π°Π²ΠΊΠ΅ Π² Π½Π΅Π³ΠΎ 0,005–0,05 мас.% Sc, Ρ‡Ρ‚ΠΎ позволяСт Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ сплав Ρ‚Π°ΠΊΠΎΠ³ΠΎ состава Π² качСствС Π°Π½ΠΎΠ΄Π½ΠΎΠ³ΠΎ покрытия для Π·Π°Ρ‰ΠΈΡ‚Ρ‹ ΠΎΡ‚ ΠΊΠΎΡ€Ρ€ΠΎΠ·ΠΈΠΈ ΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… конструкций, ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ ΠΈ сооруТСний

    ВСмпСратурная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ тСплоСмкости ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ тСрмодинамичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ сплава АК1М2, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ стронциСм

    Get PDF
    In the heat Β«coolingΒ» investigated the temperature dependence of the specific heat capacity and thermodynamic functions doped strontium alloy AK1М2 in the range 298,15β€”900 K. Mathematical models are obtained that describe the change in these properties of alloys in the temperature range 298.15β€”900 K, as well as on the concentration of the doping component. It was found that with increasing temperature, specific heat capacity, enthalpy and entropy alloys increase, and the concentration up to 0.5 wt.% of the alloying element decreases. Gibbs energy values have an inverse relationship, i.e., temperature β€” decreases the content of alloying component β€” is up to 0.5 wt.% growing.Π’ Ρ€Π΅ΠΆΠΈΠΌΠ΅ «охлаТдСния» исслСдована тСмпСратурная Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΉ тСплоСмкости ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ тСрмодинамичСских Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π»Π΅Π³ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ стронциСм сплава АК1М2 Π½Π° основС особочистого алюминия Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ 298,15β€”900 К. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ матСматичСскиС ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… свойств сплавов Π² этом Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π°. УстановлСно, Ρ‡Ρ‚ΠΎ Ρ‚Π΅ΠΏΠ»ΠΎΠ΅ΠΌΠΊΠΎΡΡ‚ΡŒ, ΡΠ½Ρ‚Π°Π»ΡŒΠΏΠΈΡ ΠΈ энтропия сплавов с ростом Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°ΡŽΡ‚ΡΡ, Π° ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° Π΄ΠΎ 0,5 % (мас.) ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‚ΡΡ, Π° Π·Π°Ρ‚Π΅ΠΌ растут. Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ энСргии Гиббса ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ: с ростом Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ β€” ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ, Π° с ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ΠΌ содСрТания Π»Π΅Π³ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π° Π΄ΠΎ 0,5 (мас.) % β€” растСт
    • …
    corecore