237 research outputs found
Disease, activity and schoolchildren's health (DASH) in Port Elizabeth, South Africa: a study protocol
BACKGROUND: An in-depth epidemiological investigation on intestinal parasite infections in an impoverished area of Port Elizabeth, South Africa provides a unique opportunity for research on its impact on children's physical fitness, cognitive performance and psychosocial health. Additionally, we will screen risk factors for the development of diabetes and hypertension in adulthood.
METHODS/DESIGN: A 2-year longitudinal cohort study will be conducted, consisting of three cross-sectional surveys (baseline and two follow-ups), in eight historically black and coloured (mixed race) primary schools located in different townships in Port Elizabeth, South Africa. Approximately 1000 Grade 4 primary schoolchildren, aged 8 to 12 years, will be enrolled and followed. At each survey, disease status, anthropometry and levels of physical fitness, cognitive performance and psychosocial health will be assessed. After each survey, individuals diagnosed with parasitic worm infections will be treated with anthelminthic drugs, while children with other infections will be referred to local clinics. Based on baseline results, interventions will be tailored to the local settings, embedded within the study and implemented in half of the schools, while the remaining schools will serve as controls. Implementation of the interventions will take place over two 8-week periods. The effect of interventions will be determined with predefined health parameters.
DISCUSSION: This study will shed new light on the health burden incurred by children in deprived urban settings of South Africa and provide guidance for specific health interventions. Challenges foreseen in the conduct of this study include: (i) difficulty in obtaining written informed consent from parents/guardians; (ii) administration of questionnaires in schools where three languages are spoken (Afrikaans, Xhosa and English); (iii) challenges in grasping concepts of psychosocial health among schoolchildren using a questionnaire; and (iv) loss to follow-up due to the study setting where illiteracy, mobility and violence are common. Finally, designing the health interventions together with local principals and teachers will allow all concerned with the research to bolster a sense of community ownership and sustained use of the interventions after the study has ceased
Propagation management methods have altered the genetic variability of two traditional mango varieties in Myanmar, as revealed by SSR
Mango (Mangifera indica L.) is an important fruit crop with a long cultivation history in Myanmar. This study evaluated the genetic variation within two economically important traditional varieties, ‘Yin Kwe’ and ‘Sein Ta Lone’, and the relationship between genetic variation and propagation practices. Genetic variation was estimated by genotyping 94 individuals with 12 single sequence repeat markers. ‘Yin Kwe’ (n = 53) showed higher levels of observed heterozygosity (Ho = 0.59) and average genetic distance among individuals (Da = 0.29) than did ‘Sein Ta Lone’ (n = 41; Ho = 0.45; Da = 0.09). The differences between the two varieties at the DNA level were significant (Fst = 0.44). The broader genetic background in ‘Yin Kwe’ compared with ‘Sein Ta Lone’ was also demonstrated by neighbour-joining and principal coordinates analyses. Differences in variety uses and propagation practices were determined by interviewing local specialists in Lower Myanmar (southern Myanmar). ‘Yin Kwe’ was often used as a rootstock for ‘Sein Ta Lone’. Clonal propagation by grafting was observed frequently for ‘Sein Ta Lone’ but never for ‘Yin Kwe’. The differences in genetic variation between these two varieties might have been caused by the propagation practices for each variety, which result from their respective uses
Intestinal parasites, growth and physical fitness of schoolchildren in poor neighbourhoods of Port Elizabeth, South Africa: a cross-sectional survey
BACKGROUND: As traditional lifestyle and diets change with social and economic development, disadvantaged communities in low- and middle-income countries increasingly face a double burden of communicable and non-communicable diseases. We studied the relationship between physical fitness and infections with soil-transmitted helminths (STHs), intestinal protozoa and Helicobacter pylori among schoolchildren in Port Elizabeth, South Africa.
METHODS: We conducted a cross-sectional survey among 1009 children, aged 9 to 12 years, from eight primary schools in socioeconomically disadvantaged neighbourhoods of Port Elizabeth. Physical fitness was determined using field-deployable tests of the Eurofit fitness test battery. Stool samples were analysed with the Kato-Katz thick smear technique to diagnose STHs and with rapid diagnostic tests (RDTs) to detect intestinal protozoa and H. pylori infections. Haemoglobin (Hb) levels were assessed and anthropometric indicators determined.
RESULTS: Complete data were available for 934 children (92 %). In two schools, high STH prevalences were found (Ascaris lumbricoides 60 and 72 %; Trichuris trichiura 65 % each). For boys and girls co-infected with A. lumbricoides and T. trichiura (n = 155) the maximal oxygen uptake (VO2 max) was estimated to be 50.1 and 47.2 ml kg(-1) min(-1), compared to 51.5 and 47.4 ml kg(-1) min(-1) for their non-infected peers (n = 278), respectively. On average, children without helminth infections had greater body mass (P = 0.011), height (P = 0.009) and a higher body mass index (P = 0.024) and were less often stunted (P = 0.006), but not significantly less wasted compared to their peers with a single or dual species infection. Among 9-year-old boys, a negative correlation between helminth infections and VO2 max, grip strength and standing broad jump distance was observed (P = 0.038). The overall mean Hb level was 122.2 g l(-1). In the two schools with the highest prevalence of STHs the Hb means were 119.7 and 120.5 g l(-1), respectively.
CONCLUSIONS: Intestinal parasite infections appear to have a small but significant negative effect on the physical fitness of infected children, as expressed by their maximal oxygen uptake. We observed a clear impact on anthropometric indicators
Flow analysis from multiparticle azimuthal correlations
We present a new method for analyzing directed and elliptic flow in heavy ion
collisions. Unlike standard methods, it separates the contribution of flow to
azimuthal correlations from contributions due to other effects. The separation
relies on a cumulant expansion of multiparticle azimuthal correlations, and
includes corrections for detector inefficiencies. This new method allows the
measurement of the flow of identified particles in narrow phase-space regions,
and can be used in every regime, from intermediate to ultrarelativistic
energies.Comment: 31 pages, revtex. Published version (references added
Microparticles: major transport vehicles for distinct microRNAs in circulation
AIMS: Circulating microRNAs (miRNAs) have attracted major interest as biomarkers for cardiovascular diseases. Since RNases are abundant in circulating blood, there needs to be a mechanism protecting miRNAs from degradation. We hypothesized that microparticles (MP) represent protective transport vehicles for miRNAs and that these are specifically packaged by their maternal cells. METHODS AND RESULTS: Conventional plasma preparations, such as the ones used for biomarker detection, are shown to contain substantial numbers of platelet-, leucocyte-, and endothelial cell-derived MP. To analyse the widest spectrum of miRNAs, Next Generation Sequencing was used to assess miRNA profiles of MP and their corresponding stimulated and non-stimulated cells of origin. THP-1 (monocytic origin) and human umbilical vein endothelial cell (HUVEC) MP were used for representing circulating MP at a high purity. miRNA profiles of MP differed significantly from those of stimulated and non-stimulated maternal THP-1 cells and HUVECs, respectively. Quantitative reverse transcription-polymerase chain reaction of miRNAs which have been associated with cardiovascular diseases also demonstrated significant differences in miRNA profiles between platelets and their MP. Notably, the main fraction of miRNA in plasma was localized in MP. Furthermore, miRNA profiles of MP differed significantly between patients with stable and unstable coronary artery disease. CONCLUSION: Circulating MP represent transport vehicles for large numbers of specific miRNAs, which have been associated with cardiovascular diseases. miRNA profiles of MP are significantly different from their maternal cells, indicating an active mechanism of selective 'packaging' from cells into MP. These findings describe an interesting mechanism for transferring gene-regulatory function from MP-releasing cells to target cells via MP circulating in blood
Pathological differences in the bone healing processes between tooth extraction socket and femoral fracture
Despite various reports on the bone healing processes of tooth extraction socket and long bone fracture, the differences of pathological changes during these healing processes remain elusive. This study aims to elucidate the underlying mechanisms behind the pathophysiology of bone regeneration between the tooth extraction socket and femoral fractures through a comparative study. Eight-week-old male mice were used in the experiments. The maxillary first molar was extracted, and intramedullary nailing femoral fracture (semistabilized fracture repair) was performed in the femur. Pathological changes in these bone injuries were investigated by micro-CT, histology, immunohistochemistry, and RT-PCR until day 7 post operation. Pathological changes in drill hole injury created in cortical bone of femur were also examined. Micro-CT analyses revealed increases in mineralized tissues in both the tooth extraction socket and femoral fracture. Histological examinations revealed that tooth socket was repaired by intramembranous ossification, and intramedullary nailing femoral fracture was healed by endochondral ossification. Immunohistochemical investigation revealed that tooth socket healing associated with Sp7-positive cells but not Sox9, aggrecan, and type II collagen, while femoral fracture models exhibited positive signals for all antibodies. RT-PCR analyses revealed the expression of Sp7, Col1a1, and Col2a1 in tooth socket healing, and the expression of Sp7, Col1a1, Runx2, Sox9, Acan, Col2a1, and Col10a1 in intramedullary nailing femoral fracture. Drill hole injury was repaired primarily by intramembranous ossification when the periosteum was removed before making the hole. The present study demonstrated that the absence of cartilage appearance during tooth extraction socket healing indicates it as distinctly different pathological features from the healing processes of semistabilized femoral fracture. This study contributes to the understanding of the molecular and cellular characteristics of bone healing among the different sites of bone injury
Cardiopulmonary disease as sequelae of long-term COVID-19: Current perspectives and challenges
COVID-19 infection primarily targets the lungs, which in severe cases progresses to cytokine storm, acute respiratory distress syndrome, multiorgan dysfunction, and shock. Survivors are now presenting evidence of cardiopulmonary sequelae such as persistent right ventricular dysfunction, chronic thrombosis, lung fibrosis, and pulmonary hypertension. This review will summarize the current knowledge on long-term cardiopulmonary sequelae of COVID-19 and provide a framework for approaching the diagnosis and management of these entities. We will also identify research priorities to address areas of uncertainty and improve the quality of care provided to these patients
Sequence-Specific Binding of Recombinant Zbed4 to DNA: Insights into Zbed4 Participation in Gene Transcription and Its Association with Other Proteins
Zbed4, a member of the BED subclass of Zinc-finger proteins, is expressed in cone photoreceptors and glial Müller cells of human retina whereas it is only present in Müller cells of mouse retina. To characterize structural and functional properties of Zbed4, enough amounts of purified protein were needed. Thus, recombinant Zbed4 was expressed in E. coli and its refolding conditions optimized for the production of homogenous and functionally active protein. Zbed4’s secondary structure, determined by circular dichroism spectroscopy, showed that this protein contains 32% α-helices, 18% β-sheets, 20% turns and 30% unordered structures. CASTing was used to identify the target sites of Zbed4 in DNA. The majority of the DNA fragments obtained contained poly-Gs and some of them had, in addition, the core signature of GC boxes; a few clones had only GC-boxes. With electrophoretic mobility shift assays we demonstrated that Zbed4 binds both not only to DNA and but also to RNA oligonucleotides with very high affinity, interacting with poly-G tracts that have a minimum of 5 Gs; its binding to and GC-box consensus sequences. However, the latter binding depends on the GC-box flanking nucleotides. We also found that Zbed4 interacts in Y79 retinoblastoma cells with nuclear and cytoplasmic proteins Scaffold Attachment Factor B1 (SAFB1), estrogen receptor alpha (ERα), and cellular myosin 9 (MYH9), as shown with immunoprecipitation and mass spectrometry studies as well as gel overlay assays. In addition, immunostaining corroborated the co-localization of Zbed4 with these proteins. Most importantly, in vitro experiments using constructs containing promoters of genes directing expression of the luciferase gene, showed that Zbed4 transactivates the transcription of those promoters with poly-G tracts
- …