1,212 research outputs found
A Modular Invariant Quantum Theory From the Connection Formulation of (2+1)-Gravity on the Torus
By choosing an unconventional polarization of the connection phase space in
(2+1)-gravity on the torus, a modular invariant quantum theory is constructed.
Unitary equivalence to the ADM-quantization is shown.Comment: Latex, 4 page
Conductivity landscape of highly oriented pyrolytic graphite surface containing ribbons and edges
We present an extensive study on electrical spectroscopy of graphene ribbons
and edges of highly oriented pyrolytic graphite (HOPG) using atomic force
microscope (AFM). We have addressed in the present study two main issues, (1)
How does the electrical property of the graphite (graphene) sheet change when
the graphite layer is displaced by shear forces? and (2) How does the
electrical property of the graphite sheet change across a step edge? While
addressing these two issues we observed, (1) variation of conductance among the
graphite ribbons on the surface of HOPG. The top layer always exhibits more
conductance than the lower layers, (2) two different monolayer ribbons on the
same sheet of graphite shows different conductance, (3) certain ribbon/sheet
edges show sharp rise in current, (4) certain ribbons/sheets on the same edge
shows both presence and absense of the sharp rise in the current, (5) some
lower layers at the interface near a step edge shows a strange dip in the
current/conductance (depletion of charge). We discuss possible reasons for such
rich conducting landscape on the surface of graphite.Comment: 13 pages, 9 figures. For better quality figures please contact autho
Optimal Covariant Measurement of Momentum on a Half Line in Quantum Mechanics
We cannot perform the projective measurement of a momentum on a half line
since it is not an observable. Nevertheless, we would like to obtain some
physical information of the momentum on a half line. We define an optimality
for measurement as minimizing the variance between an inferred outcome of the
measured system before a measuring process and a measurement outcome of the
probe system after the measuring process, restricting our attention to the
covariant measurement studied by Holevo. Extending the domain of the momentum
operator on a half line by introducing a two dimensional Hilbert space to be
tensored, we make it self-adjoint and explicitly construct a model Hamiltonian
for the measured and probe systems. By taking the partial trace over the newly
introduced Hilbert space, the optimal covariant positive operator valued
measure (POVM) of a momentum on a half line is reproduced. We physically
describe the measuring process to optimally evaluate the momentum of a particle
on a half line.Comment: 12 pages, 3 figure
A catalytic combustion-type CO gas sensor incorporating aluminum nitride as an intermediate heat transfer layer for accelerated response time
A catalytic combustion-type carbon monoxide gas sensor exhibiting good
sensing performance even at moderate temperatures was previously developed
by employing a Pt loaded CeO2–ZrO2–SnO2 solid solution as
the CO oxidizing catalyst. The addition of aluminum nitride as an
intermediate heat transfer layer between the Pt coil and the CO oxidizing
catalyst drastically accelerated the response of this device to CO at
temperatures as low as 70 °C
Cu- and Cl-NMR Studies of Triplet Localization in the Quantum Spin System NHCuCl
Cu- and Cl-NMR experiments were performed to investigate
triplet localization in the dimer compound NHCuCl, which shows
magnetization plateaus at one-quarter and three-quarters of the saturation
magnetization. In Cu-NMR experiments, signal from only the singlet Cu
site was observed, because that from the triplet Cu site was invisible due to
the strong spin fluctuation of onsite 3-spins. We found that the temperature
dependence of the shift of Cu-NMR spectra at the singlet Cu site
deviated from that of macroscopic magnetization below T=6 K. This deviation is
interpreted as the triplet localization in this system. From the
Cl-NMR experiments at the 1/4-plateau phase, we found the two
different temperature dependences of Cl-shift, namely the temperature
dependence of one deviates below T=6 K from that of the macroscopic
magnetization as observed in the Cu-NMR experiments, whereas the
other corresponds well with that of the macroscopic magnetization in the entire
experimental temperature region. We interpreted these dependences as reflecting
the transferred hyperfine field at the Cl site located at a singlet site and at
a triplet site, respectively. This result also indicates that the triplets are
localized at low temperatures. Cu-NMR experiments performed at high
magnetic fields between the one-quarter and three-quarters magnetization
plateaus have revealed that the two differently oriented dimers in the unit
cell are equally occupied by triplets, the fact of which limits the theoretical
model on the periodic structure of the localized triplets.Comment: 19 pages, 9 figures, submitted to PRB (in press
Unitary Equivalence of the Metric and Holonomy Formulations of 2+1 Dimensional Quantum Gravity on the Torus
Recent work on canonical transformations in quantum mechanics is applied to
transform between the Moncrief metric formulation and the Witten-Carlip
holonomy formulation of 2+1-dimensional quantum gravity on the torus. A
non-polynomial factor ordering of the classical canonical transformation
between the metric and holonomy variables is constructed which preserves their
classical modular transformation properties. An extension of the definition of
a unitary transformation is briefly discussed and is used to find the inner
product in the holonomy variables which makes the canonical transformation
unitary. This defines the Hilbert space in the Witten-Carlip formulation which
is unitarily equivalent to the natural Hilbert space in the Moncrief
formulation. In addition, gravitational theta-states arising from ``large''
diffeomorphisms are found in the theory.Comment: 31 pages LaTeX [Important Revision: a section is added constructing
the inner product/Hilbert space for the Witten-Carlip holonomy formulation;
the proof of unitary equivalence of the metric and holonomy formulations is
then completed. Other additions include discussion of relation of canonical
and unitary transformations. Title/abstract change.
Universe Reheating after Inflation
We study the problem of scalar particle production after inflation by a
rapidly oscillating inflaton field. We use the framework of the chaotic
inflation scenario with quartic and quadratic inflaton potentials. Particular
attention is paid to parametric resonance phenomena which take place in the
presence of the quickly oscillating inflaton field. We have found that in the
region of applicability of perturbation theory the effects of parametric
resonance are crucial, and estimates based on first order Born approximation
often underestimate the particle production. In the case of the quartic
inflaton potential , the particle production
process is very efficient even for small values of coupling constants. The
reheating temperature of the universe in this case is times larger than the corresponding estimates based
on first order Born approximation. In the case of the quadratic inflaton
potential the reheating process depends crucially on the type of coupling
between the inflaton and the other scalar field and on the magnitudes of the
coupling constants. If the inflaton coupling to fermions and its linear (in
inflaton field) coupling to scalar fields are suppressed, then, as previously
discussed by Kofman, Linde and Starobinsky (see e.g. Ref. 13), the inflaton
field will eventually decouple from the rest of the matter, and the residual
inflaton oscillations may provide the (cold) dark matter of the universe. In
the case of the quadratic inflaton potential we obtain the lowest and the
highest possible bounds on the effective energy density of the inflaton field
when it freezes out.Comment: 40 pages, Preprint BROWN-HET-957 (revised version, some mistakes
corrected), uses phyzz
Cosmological Sphaleron from Real Tunneling and Its Fate
We show that the cosmological sphaleron of Einstein-Yang-Mills system can be
produced from real tunneling geometries. The sphaleron will tend to roll down
to the vacuum or pure gauge field configuration, when the universe evolves in
the Lorentzian signature region with the sphaleron and the corresponding
hypersurface being the initial data for the Yang-Mills field and the universe,
respectively. However, we can also show that the sphaleron, although unstable,
can be regarded as a pseudo-stable solution because its lifetime is even much
greater than those of the universe.Comment: 20 pages, LaTex, article 12pt style, TIT/HEP-242/COSMO-3
Quantum three-body system in D dimensions
The independent eigenstates of the total orbital angular momentum operators
for a three-body system in an arbitrary D-dimensional space are presented by
the method of group theory. The Schr\"{o}dinger equation is reduced to the
generalized radial equations satisfied by the generalized radial functions with
a given total orbital angular momentum denoted by a Young diagram
for the SO(D) group. Only three internal variables are
involved in the functions and equations. The number of both the functions and
the equations for the given angular momentum is finite and equal to
.Comment: 16 pages, no figure, RevTex, Accepted by J. Math. Phy
- …