12,506 research outputs found

    Detection of bottom ferromagnetic electrode oxidation in magnetic tunnel junctions by magnetometry measurements

    Full text link
    Surface oxidation of the bottom ferromagnetic (FM) electrode, one of the major detrimental factors to the performance of a Magnetic Tunnel Junction (MTJ), is difficult to avoid during the fabrication process of the MTJ's tunnel barrier. Since Co rich alloys are commonly used for the FM electrodes in MTJs, over-oxidation of the tunnel barrier results in the formation of a CoO antiferromagnetic (AF) interface layer which couples with the bottom FM electrode to form a typical AF/FM exchange bias (EB) system. In this work, surface oxidation of the CoFe and CoFeB bottom electrodes was detected via magnetometry measurements of exchange-bias characterizations including the EB field, training effect, uncompensated spin density, and coercivity. Variations of these parameters were found to be related to the surface oxidation of the bottom electrode, among them the change of coercivity is most sensitive. Annealed samples show evidence for an oxygen migration back to the MgO tunnel barrier by annealing.Comment: 5 pages, 4 figues, submitted to J. Appl. Phy

    Adiabatic limit and the slow motion of vortices in a Chern-Simons-Schr\"odinger system

    Full text link
    We study a nonlinear system of partial differential equations in which a complex field (the Higgs field) evolves according to a nonlinear Schroedinger equation, coupled to an electromagnetic field whose time evolution is determined by a Chern-Simons term in the action. In two space dimensions, the Chern-Simons dynamics is a Galileo invariant evolution for A, which is an interesting alternative to the Lorentz invariant Maxwell evolution, and is finding increasing numbers of applications in two dimensional condensed matter field theory. The system we study, introduced by Manton, is a special case (for constant external magnetic field, and a point interaction) of the effective field theory of Zhang, Hansson and Kivelson arising in studies of the fractional quantum Hall effect. From the mathematical perspective the system is a natural gauge invariant generalization of the nonlinear Schroedinger equation, which is also Galileo invariant and admits a self-dual structure with a resulting large space of topological solitons (the moduli space of self-dual Ginzburg-Landau vortices). We prove a theorem describing the adiabatic approximation of this system by a Hamiltonian system on the moduli space. The approximation holds for values of the Higgs self-coupling constant close to the self-dual (Bogomolny) value of 1. The viability of the approximation scheme depends upon the fact that self-dual vortices form a symplectic submanifold of the phase space (modulo gauge invariance). The theorem provides a rigorous description of slow vortex dynamics in the near self-dual limit.Comment: Minor typos corrected, one reference added and DOI give

    A chemical sensor based on a photonic-crystal L3 nanocavity defined in a silicon-nitride membrane

    Get PDF
    The application of a silicon-nitride based L3 optical nanocavity as a chemical sensor is explored. It is shown that by adjusting the thickness of an ultra-thin Lumogen Red film deposited onto the nanocavity surface, the fundamental optical mode undergoes a progressive red-shift as the layer-thickness increases, with the cavity being able to detect the presence of a single molecular monolayer. The optical properties of a nanocavity whose surface is coated with a thin layer of a porphyrin-based polymer are also explored. On exposure of the cavity to an acidic-vapour, it is shown that changes in the optical properties of the porphyrin-film (thickness and refractive index) can be detected through a reversible shift in the cavity mode wavelength. Such effects are described using a finite difference time-domain model

    Notes on a collection of amphibians and reptiles from eastern Nicaragua

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56796/1/OP357.pd

    Conservation Laws in a First Order Dynamical System of Vortices

    Full text link
    Gauge invariant conservation laws for the linear and angular momenta are studied in a certain 2+1 dimensional first order dynamical model of vortices in superconductivity. In analogy with fluid vortices it is possible to express the linear and angular momenta as low moments of vorticity. The conservation laws are compared with those obtained in the moduli space approximation for vortex dynamics.Comment: LaTex file, 16 page

    Mechanisms of transmurally varying myocyte electromechanics in an integrated computational model

    Get PDF
    The mechanical properties of myocardium vary across the transmural aspect of the left ventricular wall. Some of these functional heterogeneities may be related to differences in excitation–contraction coupling characteristics that have been observed in cells isolated from the epicardial, mid-myocardial and endocardial regions of the left ventricle of many species, including canine. Integrative models of coupled myocyte electromechanics are reviewed and used here to investigate sources of heterogeneous electromechanical behaviour in these cells. The simulations (i) illustrate a previously unrecognized role of the transient outward potassium current in mechanical function and (ii) suggest that there may also exist additional heterogeneities affecting crossbridge cycling rates in cells from different transmural regions
    corecore