1,196 research outputs found

    Forward osmosis membranes and processes: A comprehensive review of research trends and future outlook

    Get PDF
    Recently, Forward Osmosis (FO) desalination process has been widely investigated as a potential technology that could minimize the drawbacks of traditional desalination processes. To review the past, current, and future research scope of the FO desalination process, a statistical analysis that gives insights on the FO topics of interest is needed to assist researchers in the development of the FO technology. The main objective of this work is to conduct a survey highlighting the general and specific research trends in FO technology topics. The level of research interest is quantified based on the number of publications in each area collected from Science Direct and Scopus databases from 1999 to 2020. This survey indicated an increasing number of publications on the FO processes and membranes technology. The topics of interest are fouling phenomenon, draw solutions, membrane fabrication and modification. Some potential research areas highlighted in this review to help researchers to further advance the FO technology. This review reveals that recycling the draw solution and energy consumption are the most important research areas that have shown growth in the number of publications over the last eight years. An increase of publications was also found in the treatment of the organic matter over the last decade. To further promote FO process in industry, developing FO membranes, optimizing the energy consumption, and establishing an effective recovery system are the most essential topics. Thus, the interest in this process is expected to be continued in the future

    Electric Conductivity of the Zero-gap Semiconducting State in Alpha-(BEDT-TTF)2I3 Salt

    Full text link
    The electric conductivity which reveals the zero gap semiconducting (ZGS) state has been investigated as the function of temperature TT and life time τ\tau in order to understand the ZGS state in quarter-filled α\alpha-(BEDT-TTF)2_2I3_3 salt with four sites in the unit cell. By treating τ\tau as a parameter and making use of the one-loop approximation, it is found that the conductivity is proportional to TT and τ\tau for kB≫ℏ/τk_B\gg\hbar/\tau and independent of TT and τ\tau for kBT≪ℏ/τk_B T\ll\hbar/\tau. Further the conductivity being independent of TT in the ZGS state is examined in terms of Born approximation for the impurity cattering.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Advanced Membrane Bioreactor Hybrid Systems

    Full text link

    Possible Verification of Tilted Anisotropic Dirac Cone in \alpha-(BEDT-TTF)_2 I_3 Using Interlayer Magnetoresistance

    Full text link
    It is proposed that the presence of a tilted and anisotropic Dirac cone can be verified using the interlayer magnetoresistance in the layered Dirac fermion system, which is realized in quasi-two-dimensional organic compound \alpha-(BEDT-TTF)_2 I_3. Theoretical formula is derived using the analytic Landau level wave functions and assuming local tunneling of electrons. It is shown that the resistivity takes the maximum in the direction of the tilt if anisotropy of the Fermi velocity of the Dirac cone is small. The procedure is described to determine the parameters of the tilt and anisotropy.Comment: 4 pages, 4 figures, corrected Fig.

    Dynamics of an electron in finite and infinite one dimensional systems in presence of electric field

    Full text link
    We study,numerically, the dynamical behavior of an electron in a two site nonlinear system driven by dc and ac electric field separately. We also study, numerically, the effect of electric field on single static impurity and antidimeric dynamical impurity in an infinite 1D chain to find the strength of the impurities. Analytical arguments for this system have also been given.Comment: File Latex, 8 Figures available on reques

    Performance of a novel baffled osmotic membrane bioreactor-microfiltration hybrid system under continuous operation for simultaneous nutrient removal and mitigation of brine discharge

    Full text link
    © 2017 Elsevier Ltd The present study investigated the performance of an integrated osmotic and microfiltration membrane bioreactor system for wastewater treatment employing baffles in the reactor. Thus, this reactor design enables both aerobic and anoxic processes in an attempt to reduce the process footprint and energy costs associated with continuous aeration. The process performance was evaluated in terms of water flux, salinity build up in the bioreactor, organic and nutrient removal and microbial activity using synthetic reverse osmosis (RO) brine as draw solution (DS). The incorporation of MF membrane was effective in maintaining a reasonable salinity level (612–1434 mg/L) in the reactor which resulted in a much lower flux decline (i.e. 11.48–6.98 LMH) as compared to previous studies. The stable operation of the osmotic membrane bioreactor–forward osmosis (OMBR-FO) process resulted in an effective removal of both organic matter (97.84%) and nutrient (phosphate 87.36% and total nitrogen 94.28%), respectively

    Surface modification of thin-film composite forward osmosis membranes with polyvinyl alcohol–graphene oxide composite hydrogels for antifouling properties

    Full text link
    © 2020 Elsevier B.V. In this study, the polyamide (PA) layers of commercial thin-film composite (TFC) forward osmosis (FO) membranes were coated with glutaraldehyde cross-linked polyvinyl alcohol (PVA) hydrogel comprising of graphene oxide (GO) at various loadings to enhance their fouling resistance. The optimal GO concentration of 0.02 wt% in hydrogel solution was confirmed from the FO membrane performance, and its influence on membrane antifouling properties was studied. The properties of the modified membranes, such as surface morphology, surface charge and wettability, were also investigated. PVA/GO coating was observed to increase the smoothness and hydrophilicity of the membrane surface. The foulant resistances of the pristine, PVA-coated and PVA/GO-coated membranes were also reported. PVA hydrogel-coated TFC membrane with a GO loading of 0.02 wt% showed a 55% reduction in specific reverse solute flux, only a marginal reduction in the water flux, and the best antifouling property with a 58% higher flux recovery than the pristine TFC membrane. The significant improvement in the selectivity of the modified membranes meant that the hydrogel coating could be used to seal PA defects. The biocidal GO flakes in PVA hydrogel coating also improved the biofouling resistance of the modified membranes, which could be attributed to their morphologies and superior surface properties

    Fertilizer drawn forward osmosis process for sustainable water reuse to grow hydroponic lettuce using commercial nutrient solution

    Full text link
    © 2017 Elsevier B.V. This study investigated the sustainable reuse of wastewater using fertilizer drawn forward osmosis (FDFO) process through osmotic dilution of commercial nutrient solution for hydroponics, a widely used technique for growing plants without soil. Results from the bench-scale experiments showed that the commercial hydroponic nutrient solution (i.e. solution containing water and essential nutrients) exhibited similar performance (i.e., water flux and reverse salt flux) to other inorganic draw solutions when treating synthetic wastewater. The use of hydroponic solution is highly advantageous since it provides all the required macro- (i.e., N, P and K) and micronutrients (i.e., Ca, Mg, S, Mn, B, Zn and Mo) in a single balanced solution and can therefore be used directly after dilution without the need to add any elements. After long-term operation (i.e. up to 75% water recovery), different physical cleaning methods were tested and results showed that hydraulic flushing can effectively restore up to 75% of the initial water flux while osmotic backwashing was able to restore the initial water flux by more than 95%; illustrating the low-fouling potential of the FDFO process. Pilot-scale studies demonstrated that the FDFO process is able to produce the required nutrient concentration and final water quality (i.e., pH and conductivity) suitable for hydroponic applications. Coupling FDFO with pressure assisted osmosis (PAO) in the later stages could help in saving operational costs (i.e., energy and membrane replacement costs). Finally, the test application of nutrient solution produced by the pilot FDFO process to hydroponic lettuce showed similar growth pattern as the control without any signs of nutrient deficiency

    Removal of organic micro-pollutants by conventional membrane bioreactors and high-retention membrane bioreactors

    Full text link
    © 2020 by the authors. The ubiquitous presence of organic micropollutants (OMPs) in the environment as a result of continuous discharge from wastewater treatment plants (WWTPs) into water matrices-even at trace concentrations (ng/L)-is of great concern, both in the public and environmental health domains. This fact essentially warrants developing and implementing energy-efficient, economical, sustainable and easy to handle technologies to meet stringent legislative requirements. Membrane-based processes-both stand-alone or integration of membrane processes-are an attractive option for the removal of OMPs because of their high reliability compared with conventional process, least chemical consumption and smaller footprint. This review summarizes recent research (mainly 2015-present) on the application of conventional aerobic and anaerobic membrane bioreactors used for the removal of organic micropollutants (OMP) from wastewater. Integration and hybridization of membrane processes with other physicochemical processes are becoming promising options for OMP removal. Recent studies on high retention membrane bioreactors (HRMBRs) such as osmotic membrane bioreactor (OMBRs) and membrane distillation bioreactors (MDBRs) are discussed. Future prospects of membrane bioreactors (MBRs) and HRMBRs for improving OMP removal from wastewater are also proposed
    • …
    corecore