100 research outputs found
Modeling the microstructural evolution during constrained sintering
A numerical model able to simulate solid-state constrained sintering is
presented. The model couples an existing kinetic Monte Carlo (kMC) model for
free sintering with a finite element model (FEM) for calculating stresses on a
microstructural level. The microstructural response to the local stress as well
as the FEM calculation of the stress field from the microstructural evolution
is discussed. The sintering behavior of a sample constrained by a rigid
substrate is simulated. The constrained sintering results in a larger number of
pores near the substrate, as well as anisotropic sintering shrinkage, with
significantly enhanced strain in the central upper part of the sample surface,
and minimal strain at the edges near the substrate. All these features have
also previously been observed experimentally.Comment: 9 pages, 7 figure
Universality of Electron Mobility in LaAlO/SrTiO and bulk SrTiO
Metallic LaAlO/SrTiO (LAO/STO) interfaces attract enormous attention,
but the relationship between the electron mobility and the sheet electron
density, , is poorly understood. Here we derive a simple expression for
the three-dimensional electron density near the interface, , as a
function of and find that the mobility for LAO/STO-based interfaces
depends on in the same way as it does for bulk doped STO. It is known
that undoped bulk STO is strongly compensated with background donors and acceptors. In intentionally doped
bulk STO with a concentration of electrons background impurities
determine the electron scattering. Thus, when it is natural to see
in LAO/STO the same mobility as in the bulk. On the other hand, in the bulk
samples with the mobility collapses because scattering happens on
intentionally introduced donors. For LAO/STO the polar catastrophe
which provides electrons is not supposed to provide equal number of random
donors and thus the mobility should be larger. The fact that the mobility is
still the same implies that for the LAO/STO the polar catastrophe model should
be revisited.Comment: 4 pages and 1 figur
Evidence for lattice-polarization-enhanced field effects at the SrTiO<sub>3</sub>-based heterointerface
Electrostatic gating provides a powerful approach to tune the conductivity of the two-dimensional electron liquid between two insulating oxides. For the LaAlO(3)/SrTiO(3) (LAO/STO) interface, such gating effect could be further enhanced by a strong lattice polarization of STO caused by simultaneous application of gate field and illumination light. Herein, by monitoring the discharging process upon removing the gate field, we give firm evidence for the occurrence of this lattice polarization at the amorphous-LaAlO(3)/SrTiO(3) interface. Moreover, we find that the lattice polarization is accompanied with a large expansion of the out-of-plane lattice of STO. Photo excitation affects the polarization process by accelerating the field-induced lattice expansion. The present work demonstrates the great potential of combined stimuli in exploring emergent phenomenon at complex oxide interfaces
Microscopic origin of the mobility enhancement at a spinel/perovskite oxide heterointerface revealed by photoemission spectroscopy
The spinel/perovskite heterointerface -AlO/SrTiO hosts a
two-dimensional electron system (2DES) with electron mobilities exceeding those
in its all-perovskite counterpart LaAlO/SrTiO by more than an order of
magnitude despite the abundance of oxygen vacancies which act as electron
donors as well as scattering sites. By means of resonant soft x-ray
photoemission spectroscopy and \textit{ab initio} calculations we reveal the
presence of a sharply localized type of oxygen vacancies at the very interface
due to the local breaking of the perovskite symmetry. We explain the
extraordinarily high mobilities by reduced scattering resulting from the
preferential formation of interfacial oxygen vacancies and spatial separation
of the resulting 2DES in deeper SrTiO layers. Our findings comply with
transport studies and pave the way towards defect engineering at interfaces of
oxides with different crystal structures.Comment: Accepted as Rapid Communications in Physical Review
- …