5,526 research outputs found
Mutual impedance effects in scanned antenna arrays technical report no. 2
Mutual impedance effects in electronically-scanned antenna array
The measurement of harmonics produced by a pin diode in a microwave switching application Final report
Measurement of harmonics produced by a pin diode in microwave switc
Electronic scanning and beam shaping methods technical report no. 1
Electronically scanned antenna array and beam scannin
Towards first-principles understanding of the metal-insulator transition in fluid alkali metals
By treating the electron-ion interaction as perturbation in the
first-principles Hamiltonian, we have calculated the density response functions
of a fluid alkali metal to find an interesting charge instability due to
anomalous electronic density fluctuations occurring at some finite wave vector
{\bi Q} in a dilute fluid phase above the liquid-gas critical point. Since
|{\bi Q}| is smaller than the diameter of the Fermi surface, this instability
necessarily impedes the electric conduction, implying its close relevance to
the metal-insulator transition in fluid alkali metals.Comment: 11 pages, 5 figure
Study of inexact modeling techniques Final report
Scale modeling antenna systems for aircraft and missiles with anechoic chamber evaluation and us
Fingerprints of intrinsic phase separation: magnetically doped two-dimensional electron gas
In addition to Anderson and Mott localization, intrinsic phase separation has
long been advocated as the third fundamental mechanism controlling the
doping-driven metal-insulator transitions. In electronic system, where charge
neutrality precludes global phase separation, it may lead to various
inhomogeneous states and dramaticahttp://arxiv.org/submit/215787/metadata arXiv
Submission metadatally affect transport. Here we theoretically predict the
precise experimental signatures of such phase-separation-driven metal-insulator
transitions. We show that anomalous transport is expected in an intermediate
regime around the transition, displaying very strong temperature and magnetic
field dependence, but very weak density dependence. Our predictions find
striking agreement with recent experiments on Mn-doped CdTe quantum wells, a
system where we identify the microscopic origin for intrinsic phase separation.Comment: 4+epsilon pages, 4 figure
Photon deflection by a Coulomb field in noncommutative QED
In noncommutative QED photons present self-interactions in the form of triple
and quartic interactions. The triple interaction implies that, even though the
photon is electrically neutral, it will deflect when in the presence of an
electromagnetic field. If detected, such deflection would be an undoubted
signal of noncommutative space-time. In this work we derive the general
expression for the deflection of a photon by any electromagnetic field. As an
application we consider the case of the deflection of a photon by an external
static Coulomb field.Comment: 07 pages, some typos corrected, accepted for publication in JP
Doping Dependence of Polaron Hopping Energies in La(1-x)Ca(x)MnO(3) (0<= x<= 0.15)
Measurements of the low-frequency (f<= 100 kHz) permittivity at T<= 160 K and
dc resistivity (T<= 430 K) are reported for La(1-x)Ca(x)MnO(3) (0<= x<= 0.15).
Static dielectric constants are determined from the low-T limiting behavior of
the permittivity. The estimated polarizability for bound holes ~ 10^{-22}
cm^{-3} implies a radius comparable to the interatomic spacing, consistent with
the small polaron picture established from prior transport studies near room
temperature and above on nearby compositions. Relaxation peaks in the
dielectric loss associated with charge-carrier hopping yield activation
energies in good agreement with low-T hopping energies determined from
variable-range hopping fits of the dc resistivity. The doping dependence of
these energies suggests that the orthorhombic, canted antiferromagnetic ground
state tends toward an insulator-metal transition that is not realized due to
the formation of the ferromagnetic insulating state near Mn(4+) concentration ~
0.13.Comment: PRB in press, 5 pages, 6 figure
Feshbach resonances in ultracold ^{6,7}Li + ^{23}Na atomic mixtures
We report a theoretical study of Feshbach resonances in Li + Na
and Li + Na mixtures at ultracold temperatures using new accurate
interaction potentials in a full quantum coupled-channel calculation. Feshbach
resonances for in the initial collisional open channel LiNa are found to agree with previous
measurements, leading to precise values of the singlet and triplet scattering
lengths for the LiNa pairs. We also predict additional Feshbach
resonances within experimentally attainable magnetic fields for other collision
channels.Comment: 4 pages, 3 figure
Colossal electroresistance in ferromagnetic insulating state of single crystal NdPbMnO
Colossal electroresistance (CER) has been observed in the ferromagnetic
insulating (FMI) state of a manganite. Notably, the CER in the FMI state occurs
in the absence of magnetoresistance (MR). Measurements of electroresistance
(ER) and current induced resistivity switching have been performed in the
ferromagnetic insulating state of a single crystal manganite of composition
NdPbMnO (NPMO30). The sample has a paramagnetic to
ferromagnetic (Curie) transition temperature, Tc = 150 K and the ferromagnetic
insulating state is realized for temperatures, T <~ 130 K. The colossal
electroresistance, arising from a strongly nonlinear dependence of resistivity
() on current density (j), attains a large value () in the
ferromagnetic insulating state. The severity of this nonlinear behavior of
resistivity at high current densities is progressively enhanced with decreasing
temperature, resulting ultimately, in a regime of negative differential
resistivity (NDR, d/dj < 0) for temperatures <~ 25 K. Concomitant with
the build-up of the ER however, is a collapse of the MR to a small value (<
20%) even in magnetic field, H = 7 T. This demonstrates that the mechanisms
that give rise to ER and MR are effectively decoupled in the ferromagnetic
insulating phase of manganites. We establish that, the behavior of
ferromagnetic insulating phase is distinct from the ferromagnetic metallic
(FMM) phase as well as the charge ordered insulating (COI) phase, which are the
two commonly realized ground state phases of manganites.Comment: 24 pages (RevTeX4 preprint), 8 figures, submitted to PR
- …