782 research outputs found
Enhancement of luminescence by pulse laser annealing of ion-implanted europium in sapphire and silica
Sapphire (Al2O3) and silica samples have been implanted with 400 keV europium ions at fluences between 5×1014 and 1×1016 ions cm-2. As-implanted, samples show luminescence at 622 nm, and although the intensity may be increased by furnace anneals up to 1000°C, higher temperatures, to 1200°C, result in less emission, as the impurity ions form precipitate clusters. This problem can be avoided by the use of pulsed laser anneals which dissociate the clusters and quench in atomically dispersed ions. The luminescence intensity has been increased by factors of 95 and 85 for sapphire and silica, respectively, relative to the initial implanted signal. On comparing with furnace anneals at 1200°C, the pulsed laser annealing is more effective, by factors of up to 45 times. Data for pulsed excimer and CO2 lasers are compared. Both types of laser appear to remove the ion-implanted radiation damage, but in the case of silica, higher luminescence performance was obtained with the excimer anneals. There was no evidence for diffusion of the implanted europium, as assessed by Rutherford backscattering spectrometry. © 1995 American Institute of Physics.We thank Barry Farmery for his help with the RBS work, and both the University of Ege in Turkey and the Science and Engineering Research Council for their financial assistance. We appreciate the use of a Lumonics (Hull Op- erations) Ltd. TEA CO, laser.Peer Reviewe
Does deprivation affect breast cancer management?
We evaluated whether social deprivation affected decision-making for breast cancer surgery. Of 3419 patients, 53.6% had mastectomy and this was predicted by deprivation, age, tumour size and hospital, all of which retained significance on multivariate analysis, except deprivation. Pathological characteristics and surgical decision-making determined choice of operation not deprivation
A Coordinated X-ray and Optical Campaign of the Nearby Massive Binary Orionis Aa: II. X-ray Variability
We present time-resolved and phase-resolved variability studies of an
extensive X-ray high-resolution spectral dataset of the Orionis Aa
binary system. The four observations, obtained with Chandra ACIS HETGS, have a
total exposure time of ~479 ks and provide nearly complete binary phase
coverage. Variability of the total X-ray flux in the range 5-25 is
confirmed, with maximum amplitude of about +/-15% within a single ~125 ks
observation. Periods of 4.76d and 2.04d are found in the total X-ray flux, as
well as an apparent overall increase in flux level throughout the 9-day
observational campaign. Using 40 ks contiguous spectra derived from the
original observations, we investigate variability of emission line parameters
and ratios. Several emission lines are shown to be variable, including S XV, Si
XIII, and Ne IX. For the first time, variations of the X-ray emission line
widths as a function of the binary phase are found in a binary system, with the
smallest widths at phase=0.0 when the secondary Orionis Aa2 is at
inferior conjunction. Using 3D hydrodynamic modeling of the interacting winds,
we relate the emission line width variability to the presence of a wind cavity
created by a wind-wind collision, which is effectively void of embedded wind
shocks and is carved out of the X-ray-producing primary wind, thus producing
phase-locked X-ray variability.Comment: 36 pages, 14 Tables, 19 Figures, accepted by ApJ, one of 4 related
papers to be published togethe
A Coordinated X-ray and Optical Campaign on the Nearest Massive Eclipsing Binary, Delta Ori Aa: I. Overview of the X-ray Spectrum
We present an overview of four phase-constrained Chandra HETGS X-ray
observations of Delta Ori A. Delta Ori A is actually a triple system which
includes the nearest massive eclipsing spectroscopic binary, Delta Ori Aa, the
only such object which can be observed with little phase-smearing with the
Chandra gratings. Since the fainter star, Delta Ori Aa2, has a much lower X-ray
luminosity than the brighter primary, Delta Ori A provides a unique system with
which to test the spatial distribution of the X-ray emitting gas around Delta
Ori Aa1 via occultation by the photosphere of and wind cavity around the X-ray
dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for
the combined observation, having an exposure time of nearly 500 ksec and
covering nearly the entire binary orbit. Companion papers discuss the X-ray
variability seen in the Chandra spectra, present new space-based photometry and
ground-based radial velocities simultaneous with the X-ray data to better
constrain the system parameters, and model the effects of X-rays on the optical
and UV spectrum. We find that the X-ray emission is dominated by embedded wind
shock emission from star Aa1, with little contribution from the tertiary star
Ab or the shocked gas produced by the collision of the wind of Aa1 against the
surface of Aa2. We find a similar temperature distribution to previous X-ray
spectrum analyses. We also show that the line half-widths are about
the terminal velocity of the wind of star Aa1. We find a strong
anti-correlation between line widths and the line excitation energy, which
suggests that longer-wavelength, lower-temperature lines form farther out in
the wind. Our analysis also indicates that the ratio of the intensities of the
strong and weak lines of \ion{Fe}{17} and \ion{Ne}{10} are inconsistent with
model predictions, which may be an effect of resonance scatteringComment: accepted by ApJ; revised according to ApJ proo
Aerodynamic investigations of ventilated brake discs.
The heat dissipation and performance of a ventilated brake disc strongly depends
on the aerodynamic characteristics of the flow through the rotor passages. The
aim of this investigation was to provide an improved understanding of ventilated
brake rotor flow phenomena, with a view to improving heat dissipation, as well
as providing a measurement data set for validation of computational fluid
dynamics methods. The flow fields at the exit of four different brake rotor
geometries, rotated in free air, were measured using a five-hole pressure probe
and a hot-wire anemometry system. The principal measurements were taken using
two-component hot-wire techniques and were used to determine mean and unsteady
flow characteristics at the exit of the brake rotors. Using phase-locked data
processing, it was possible to reveal the spatial and temporal flow variation
within individual rotor passages. The effects of disc geometry and rotational
speed on the mean flow, passage turbulence intensity, and mass flow were
determined. The rotor exit jet and wake flow were clearly observed as
characterized by the passage geometry as well as definite regions of high and
low turbulence. The aerodynamic flow characteristics were found to be reasonably
independent of rotational speed but highly dependent upon rotor geometry
Modeling of crop wild relative species identifies areas globally for in situ conservation
The impact of climate change is causing challenges for the agricultural production and food systems. More nutritious and climate resilient crop varieties are required, but lack of available and accessible trait diversity is limiting crop improvement. Crop wild relatives (CWR) are the wild cousins of cultivated crops and a vast resource of genetic diversity for breeding new, higher yielding, climate change tolerant crop varieties, but they are under-conserved (particularly in situ), largely unavailable and therefore underutilized. Here we apply species distribution modelling, climate change projections and geographic analyses to 1261 CWR species from 167 major crop genepools to explore key geographical areas for CWR in situ conservation worldwide. We identify 150 sites where 65.7% of the CWR species identified can be conserved for future use
EquiFACS: the Equine Facial Action Coding System
Although previous studies of horses have investigated their facial expressions in specific contexts, e.g. pain, until now there has been no methodology available that documents all the possible facial movements of the horse and provides a way to record all potential facial configurations. This is essential for an objective description of horse facial expressions across a range of contexts that reflect different emotional states. Facial Action Coding Systems (FACS) provide a systematic methodology of identifying and coding facial expressions on the basis of underlying facial musculature and muscle movement. FACS are anatomically based and document all possible facial movements rather than a configuration of movements associated with a particular situation. Consequently, FACS can be applied as a tool for a wide range of research questions. We developed FACS for the domestic horse (Equus caballus) through anatomical investigation of the underlying musculature and subsequent analysis of naturally occurring behaviour captured on high quality video. Discrete facial movements were identified and described in terms of the underlying muscle contractions, in correspondence with previous FACS systems. The reliability of others to be able to learn this system (EquiFACS) and consistently code behavioural sequences was high—and this included people with no previous experience of horses. A wide range of facial movements were identified, including many that are also seen in primates and other domestic animals (dogs and cats). EquiFACS provides a method that can now be used to document the facial movements associated with different social contexts and thus to address questions relevant to understanding social cognition and comparative psychology, as well as informing current veterinary and animal welfare practices
The CDK9 C-helix Exhibits Conformational Plasticity That May Explain the Selectivity of CAN508
Correct regulation of transcription is essential for maintaining a healthy cellular state. During transcription RNA polymerase II (Pol II) proceeds in a regulated manner through several transitions to ensure appropriate control of synthesis and enable correct processing of the pre-RNA. Shortly after initiation Pol II is caused to pause by the binding of factors, DSIF and NELF. To enable transition of Pol II into the elongation phase CDK9/cyclin T phosphorylates the C-terminal domain (CTD) of Pol II, DSIF and NELF. This phosphorylation releases the paused state and provides an alternative set of post-transcriptional modifications on the CTD to generate a binding platform for elongation, histone modifying and termination factors. CDK9/cyclin T is itself regulated within multicomponent complexes. A small activated complex, containing Brd4, recruits CDK9/cyclin T to active sites of transcription, thereby promoting the elongation of transcription. The role of CDK9/cyclin T in the regulation of transcription has resulted in its validation as a drug target against several disease states including cancer, HIV and cardiac hypertrophy.In this thesis, I present the crystallographic structures of a series of 2-amino-4-heteroaryl-pyrimidine compounds and the roscovitine derivative, (S)-CR8, bound to CDK9/cyclin T and CDK2/cyclin A. In combination with thermal denaturation data and kinetic analysis, these structures have suggested chemical modifications that might be made to increase the CDK9 specificity of these compounds. I have also validated the use of a mutated form of cyclin T for use in the development of CDK9/cyclin T inhibitors.In addition, I present both structural and kinetic analysis of the Brd4-CDK9/cyclin T interaction. I show that C-terminal fragments of Brd4 enhance the in vitro kinase activity of CDK9/cyclin T against the Pol II CTD. Furthermore, I demonstrate that this enhancement may be inhibited by Plk1-mediated phosphorylation of Brd4. Finally, I show that Brd4 binds to a site that spans CDK9 and cyclin T and I propose detailed molecular models of the Brd4-cyclin T interaction.This thesis is not currently available via ORA
Passerine Birds Breeding under Chronic Noise Experience Reduced Fitness
Background
Fitness in birds has been shown to be negatively associated with anthropogenic noise, but the underlying mechanisms remain obscure. It is however crucial to understand the mechanisms of how urban noise impinges on fitness to obtain a better understanding of the role of chronic noise in urban ecology. Here, we examine three hypotheses on how noise might reduce reproductive output in passerine birds: (H1) by impairing mate choice, (H2) by reducing territory quality and (H3) by impeding chick development.
Methodology/Principal Findings
We used long-term data from an island population of house sparrows, Passer domesticus, in which we can precisely estimate fitness. We found that nests in an area affected by the noise from large generators produced fewer young, of lower body mass, and fewer recruits, even when we corrected statistically for parental genetic quality using a cross-fostering set-up, supporting H3. Also, individual females provided their young with food less often when they bred in the noisy area compared to breeding attempts by the same females elsewhere. Furthermore, we show that females reacted flexibly to increased noise levels by adjusting their provisioning rate in the short term, which suggests that noise may be a causal factor that reduces reproductive output. We rejected H1 and H2 because nestbox occupancy, parental body mass, age and reproductive investment did not differ significantly between noisy and quiet areas.
Conclusions/Significance
Our results suggest a previously undescribed mechanism to explain how environmental noise can reduce fitness in passerine birds: by acoustically masking parent–offspring communication. More importantly, using a cross-fostering set-up, our results demonstrate that birds breeding in a noisy environment experience significant fitness costs. Chronic noise is omnipresent around human habitation and may produces similar fitness consequences in a wide range of urban bird species
- …