3,003 research outputs found

    To what distances do we know the confining potential?

    Full text link
    We argue that asymptotically linear static potential is built in into the common procedure of extracting it from lattice Wilson loop measurements. To illustrate the point, we extract the potential by the standard lattice method in a model vacuum made of instantons. A beautiful infinitely rising linear potential is obtained in the case where the true potential is actually flattening. We argue that the flux tube formation might be also an artifact of the lattice procedure and not necessarily a measured physical effect. We conclude that at present the rising potential is known for sure up to no more than about 0.7 fm. It may explain why no screening has been clearly observed so far for adjoint sources and for fundamental sources but with dynamical fermions. Finally, we speculate on how confinement could be achieved even if the static potential in the pure glue theory is not infinitely rising.Comment: 16 pages, 5 figures. Additional arguments presented, a new figure and references adde

    Can a Logarithmically Running Coupling Mimic a String Tension?

    Full text link
    It is shown that a Coulomb potential using a running coupling slightly modified from the perturbative form can produce an interquark potential that appears nearly linear over a large distance range. Recent high-statistics SU(2) lattice gauge theory data fit well to this potential without the need for a linear string-tension term. This calls into question the accuracy of string tension measurements which are based on the assumption of a constant coefficient for the Coulomb term. It also opens up the possibility of obtaining an effectively confining potential from gluon exchange alone.Comment: 13 pages, LaTeX, two figures not included, available from author. revision - Line lengths fixed so it will tex properl

    Diurnal Temperature Range Variability due to Land Cover and Airmass Types in the Southeast

    Get PDF
    This study examines the relationship between diurnal temperature range (DTR) and land use/land cover (LULC) in a portion of the Southeast. Temperature data for all synoptically weak days within a 10-yr period are gathered from the National Climatic Data Center for 144 weather stations. Each station is classified as one of the following LULC types: urban, agriculture, evergreen forest, deciduous forest, or mixed forest.Athreeway analysis of variance and paired-sample t tests are used to test for significant DTR differences due to LULC, month, and airmass type. The LULC types display two clear groups according to their DTR, with agricultural and urban areas consistently experiencing the smallest DTRs, and the forest types experiencing greater DTRs. The dry air masses seem to enhance the DTR differences between vegetated LULC types by emphasizing the differences in evapotranspiration. Meanwhile, the high moisture content of moist air masses prohibits extensive evapotranspirational cooling in the vegetated areas. This lessens the DTR differences between vegetatedLULC types, while enhancing the differences between vegetated land and urban areas. All of the LULC types exhibit an annual bimodal DTR pattern with peaks in April and October. Since both vegetated and nonvegetated areas experience the bimodal pattern, this may conflict with previous research that names seasonal changes in evapotranspiration as the most probable cause for the annual trend. These findings suggest that airmass type has a larger and more consistent influence on the DTR of an area than LULC type and therefore may play a role in causing the bimodal DTR pattern, altering DTR with the seasonal distribution of airmass occurrence
    • …
    corecore