18 research outputs found

    SARS-Cov-2 Spike Protein Antibody Titers In Cord Blood After Vaccination Against Covid-19 During Pregnancy

    Get PDF
    In the early months of the COVID-19 pandemic, pregnant patients faced uncertain risks associated with severe acute respiratory syndrome SARS-CoV-2 viral infection. Aim of the study was to determine the titer of specific maternal and umbilical cord antibodies against SARS-CoV-2 viral protein S receptor domain after maternal antenatal vaccination. The paper presents preliminary results of the study proceeded in the department. 13 patients vaccinated during different gestational age have been included in the study. All patients participating in this study were vaccinated with two doses of BNT162b2 mRNA COVID-19 vaccine between the 4 to 31 week of gestation. The in vitro qualitative and quantitative determination of antibodies against SARS-CoV-2 viral protein S receptor domain in serum samples was performed by using an electrochemiluminescence immunoassay. Β Study results demonstrated that, vaccination against SARS-Cov-2 viral infection during pregnancy is accompanied with adequate production of antibodies that probably may defense neonates from severe infection at least within 6 month of life. Study has revealed positive correlation between time interval of vaccination and delivery for the presence of high titers of SARS-Cov-2 viral protein S receptor domain antibodies in neonatal cord blood, which may allow future determination of the optimal timing of COVID-19 vaccination in pregnant women although this problem need more future studies

    Vacuum Energy Density in the Quantum Yang - Mills Theory

    Full text link
    Using the effective potential approach for composite operators, we have formulated a general method of calculation of the truly non-perturbative Yang-Mills vacuum energy density (this is, by definition, the Bag constant apart from the sign). It is the main dynamical characteristic of the QCD ground state. Our method allows one to make it free of the perturbative contributions ('contaminations'), by construction. We also perform an actual numerical calculation of the Bag constant for the confining effective charge. Its choice uniquely defines the Bag constant, which becomes free of all the types of the perturbative contributions now, as well as possessing many other desirable properties as colorless, gauge independence, etc. Using further the trace anomaly relation, we develop a general formalism which makes it possible to relate the Bag constant to the gluon condensate not using the weak coupling solution for the corresponding Ξ²\beta function. Our numerical result for the Bag constant shows a good agreement with other phenomenological estimates of the gluon condensate.Comment: 28 pages and 4 figures, typos corrected, added new appendices and new references in comparison with the published versio

    A minimal quasiparticle approach for the QGP and its large-NcN_c limits

    Full text link
    We propose a quasiparticle approach allowing to compute the equation of state of a generic gauge theory with gauge group SU(NcN_c) and quarks in an arbitrary representation. Our formalism relies on the thermal quasiparticle masses (quarks and gluons) computed from Hard-Thermal-Loop techniques, in which the standard two-loop running coupling constant is used. Our model is minimal in the sense that we do not allow any extra ansatz concerning the temperature-dependence of the running coupling. We first show that it is able to reproduce the most recent equations of state computed on the lattice for temperatures higher than 2 TcT_c. In this range of temperatures, an ideal gas framework is indeed expected to be relevant. Then we study the accuracy of various inequivalent large-NcN_c limits concerning the description of the QCD results, as well as the equivalence between the QCDAS_{AS} limit and the N=1{\cal N}=1 SUSY Yang-Mills theory. Finally, we estimate the dissociation temperature of the Ξ₯\Upsilon-meson and comment on the estimations' stability regarding the different considered large-NcN_c limits.Comment: 19 pages, 6 figure

    ΠŸΡ€ΠΎΠ³Π½ΠΎΠ· Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π° ΠΊΠΎΠΆΠ½ΠΎΠΉ пластики ΠΏΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌ микроциркуляции Π² ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ€Π°Π½Π΅

    Get PDF
    BACKGROUND Irregularity and mosaicity in the depth of the burn skin lesion limits the possibility of performing precision tangential necrectomy in the early stages after injury. Non-radical necrectomy leads to lysis of transplanted autodermal grafts. This problem is most relevant in the treatment of victims with extensive dermal and deep burns.AIM OF STUDY To study the relationship between microcirculation parameters in the burn wound and the outcomes of autodermal transplantation after tangential necrectomy.MATERIAL AND METHODS 74 patients with extensive skin burns included in the study underwent tangential necrectomy with simultaneous autodermal transplantation. All operations were performed early (up to 10 days) after injury before the formation of the demarcation line. Microcirculation parameters in the burn wound were studied by laser Doppler flowmetry before and after tangential necrectomy and in healthy skin of the same anatomical region.RESULTS Statistically significant differences (p≀0.001) were found between microcirculation parameters in the center of the burn wound after tangential necrectomy and in the control area of intact skin. In this case, the results of autodermal transplantation were characterized by a skin engraftment rate of up to 60–70%. In those areas of the body where there were no differences between microcirculation parameters , the engraftment exceeded 80%.CONCLUSION Assessment of microcirculation by laser Doppler flowmetry can be a reliable method for diagnosing the condition and viability of a burn wound after tangential excision of dead tissues in the early stages of treatment β€” before the formation of a demarcation line. The diagnostic technique is easy to use, but requires skills in working with a flowmeter, unification of such devices and methods for their use in the practice of surgical treatment of burns.ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΠ΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΈ ΠΌΠΎΠ·Π°ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΏΠΎ Π³Π»ΡƒΠ±ΠΈΠ½Π΅ ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ пораТСния ΠΊΠΎΠΆΠΈ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡ΠΈΠ²Π°Π΅Ρ‚ возмоТности выполнСния ΠΏΡ€Π΅Ρ†ΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ Ρ‚Π°Π½Π³Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ нСкрэктомии Π² Ρ€Π°Π½Π½ΠΈΠ΅ сроки послС Ρ‚Ρ€Π°Π²ΠΌΡ‹. ΠΠ΅Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ нСкрэктомия ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ лизису пСрСсаТСнных аутодСрмотрансплантатов. НаиболСС Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π° данная ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° Π² Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ ΠΏΠΎΡΡ‚Ρ€Π°Π΄Π°Π²ΡˆΠΈΡ… с ΠΎΠ±ΡˆΠΈΡ€Π½Ρ‹ΠΌΠΈ Π΄Π΅Ρ€ΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΈ Π³Π»ΡƒΠ±ΠΎΠΊΠΈΠΌΠΈ ΠΎΠΆΠΎΠ³Π°ΠΌΠΈ.ЦСль Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ микроциркуляции Π² ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ€Π°Π½Π΅ ΠΈ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ аутодСрмотрансплантации послС выполнСния Ρ‚Π°Π½Π³Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ нСкрэктомии.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Π₯ирургичСскоС Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ 74 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΎΠ±ΡˆΠΈΡ€Π½Ρ‹ΠΌΠΈ ΠΎΠΆΠΎΠ³Π°ΠΌΠΈ ΠΊΠΎΠΆΠΈ, Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Π½Ρ‹Ρ… Π² исслСдованиС, осущСствляли ΠΏΡƒΡ‚Π΅ΠΌ Ρ‚Π°Π½Π³Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ нСкрэктомии с ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ аутодСрмотрансплантациСй. ВсС ΠΎΠΏΠ΅Ρ€Π°Ρ†ΠΈΠΈ выполняли Π² Ρ€Π°Π½Π½ΠΈΠ΅ сроки (Π΄ΠΎ 10 суток) послС Ρ‚Ρ€Π°Π²ΠΌΡ‹ Π΄ΠΎ формирования Π»ΠΈΠ½ΠΈΠΈ Π΄Π΅ΠΌΠ°Ρ€ΠΊΠ°Ρ†ΠΈΠΈ. ΠŸΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ микроциркуляции Π² ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ€Π°Π½Π΅ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ допплСровской Ρ„Π»ΠΎΡƒΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ Π΄ΠΎ ΠΈ послС Ρ‚Π°Π½Π³Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ нСкрэктомии ΠΈ Π² Π·Π΄ΠΎΡ€ΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΆΠ΅ Ρ‚ΠΎΠΉ ΠΆΠ΅ анатомичСской области.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ВыявлСны статистичСски Π·Π½Π°Ρ‡ΠΈΠΌΡ‹Π΅ различия (ΠΏΡ€ΠΈ p≀0,001) ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ микроциркуляции нСпосрСдствСнно Π² ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ€Π°Π½Π΅ послС выполнСния Ρ‚Π°Π½Π³Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ нСкрэктомии ΠΈ Π½Π° ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΎΠΌ участкС Π½Π΅ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½Π½ΠΎΠΉ ΠΊΠΎΠΆΠΈ. Π’ этом случаС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ аутодСрмотрансплантации Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΠΎΠ²Π°Π»ΠΈΡΡŒ частотой приТивлСния ΠΊΠΎΠΆΠΈ Π΄ΠΎ 60–70%. Π’ Ρ‚Π΅Ρ… областях Ρ‚Π΅Π»Π°, Π³Π΄Π΅ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρƒ показатСлями микроциркуляции Π½Π΅ Π±Ρ‹Π»ΠΎ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ приТивлСния прСвысили 80%.Π’Ρ‹Π²ΠΎΠ΄Ρ‹ ΠžΡ†Π΅Π½ΠΊΠ° микроциркуляции ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π»Π°Π·Π΅Ρ€Π½ΠΎΠΉ допплСровской Ρ„Π»ΠΎΡƒΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΡΠ²ΠΈΡ‚ΡŒΡΡ достовСрным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ диагностики состояния ΠΈ ТизнСспособности ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ Ρ€Π°Π½Ρ‹ послС Ρ‚Π°Π½Π³Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ иссСчСния ΠΏΠΎΠ³ΠΈΠ±ΡˆΠΈΡ… Ρ‚ΠΊΠ°Π½Π΅ΠΉ Π² Ρ€Π°Π½Π½ΠΈΠ΅ сроки лСчСния – Π΄ΠΎ формирования Π΄Π΅ΠΌΠ°Ρ€ΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° диагностики проста Π² ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ Ρ‚Ρ€Π΅Π±ΡƒΠ΅Ρ‚ Π½Π°Π²Ρ‹ΠΊΠΎΠ² Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Ρ„Π»ΡƒΠΎΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ, ΡƒΠ½ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ ΠΈΡ… использования Π² ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ хирургичСского лСчСния ΠΎΠΆΠΎΠ³ΠΎΠ²
    corecore