18 research outputs found
SARS-Cov-2 Spike Protein Antibody Titers In Cord Blood After Vaccination Against Covid-19 During Pregnancy
In the early months of the COVID-19 pandemic, pregnant patients faced uncertain risks associated with severe acute respiratory syndrome SARS-CoV-2 viral infection. Aim of the study was to determine the titer of specific maternal and umbilical cord antibodies against SARS-CoV-2 viral protein S receptor domain after maternal antenatal vaccination. The paper presents preliminary results of the study proceeded in the department. 13 patients vaccinated during different gestational age have been included in the study. All patients participating in this study were vaccinated with two doses of BNT162b2 mRNA COVID-19 vaccine between the 4 to 31 week of gestation. The in vitro qualitative and quantitative determination of antibodies against SARS-CoV-2 viral protein S receptor domain in serum samples was performed by using an electrochemiluminescence immunoassay. Β Study results demonstrated that, vaccination against SARS-Cov-2 viral infection during pregnancy is accompanied with adequate production of antibodies that probably may defense neonates from severe infection at least within 6 month of life. Study has revealed positive correlation between time interval of vaccination and delivery for the presence of high titers of SARS-Cov-2 viral protein S receptor domain antibodies in neonatal cord blood, which may allow future determination of the optimal timing of COVID-19 vaccination in pregnant women although this problem need more future studies
Vacuum Energy Density in the Quantum Yang - Mills Theory
Using the effective potential approach for composite operators, we have
formulated a general method of calculation of the truly non-perturbative
Yang-Mills vacuum energy density (this is, by definition, the Bag constant
apart from the sign). It is the main dynamical characteristic of the QCD ground
state. Our method allows one to make it free of the perturbative contributions
('contaminations'), by construction. We also perform an actual numerical
calculation of the Bag constant for the confining effective charge. Its choice
uniquely defines the Bag constant, which becomes free of all the types of the
perturbative contributions now, as well as possessing many other desirable
properties as colorless, gauge independence, etc. Using further the trace
anomaly relation, we develop a general formalism which makes it possible to
relate the Bag constant to the gluon condensate not using the weak coupling
solution for the corresponding function. Our numerical result for the
Bag constant shows a good agreement with other phenomenological estimates of
the gluon condensate.Comment: 28 pages and 4 figures, typos corrected, added new appendices and new
references in comparison with the published versio
A minimal quasiparticle approach for the QGP and its large- limits
We propose a quasiparticle approach allowing to compute the equation of state
of a generic gauge theory with gauge group SU() and quarks in an arbitrary
representation. Our formalism relies on the thermal quasiparticle masses
(quarks and gluons) computed from Hard-Thermal-Loop techniques, in which the
standard two-loop running coupling constant is used. Our model is minimal in
the sense that we do not allow any extra ansatz concerning the
temperature-dependence of the running coupling. We first show that it is able
to reproduce the most recent equations of state computed on the lattice for
temperatures higher than 2 . In this range of temperatures, an ideal gas
framework is indeed expected to be relevant. Then we study the accuracy of
various inequivalent large- limits concerning the description of the QCD
results, as well as the equivalence between the QCD limit and the SUSY Yang-Mills theory. Finally, we estimate the dissociation temperature
of the -meson and comment on the estimations' stability regarding the
different considered large- limits.Comment: 19 pages, 6 figure
ΠΡΠΎΠ³Π½ΠΎΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ° ΠΊΠΎΠΆΠ½ΠΎΠΉ ΠΏΠ»Π°ΡΡΠΈΠΊΠΈ ΠΏΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ Π² ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°Π½Π΅
BACKGROUND Irregularity and mosaicity in the depth of the burn skin lesion limits the possibility of performing precision tangential necrectomy in the early stages after injury. Non-radical necrectomy leads to lysis of transplanted autodermal grafts. This problem is most relevant in the treatment of victims with extensive dermal and deep burns.AIM OF STUDY To study the relationship between microcirculation parameters in the burn wound and the outcomes of autodermal transplantation after tangential necrectomy.MATERIAL AND METHODS 74 patients with extensive skin burns included in the study underwent tangential necrectomy with simultaneous autodermal transplantation. All operations were performed early (up to 10 days) after injury before the formation of the demarcation line. Microcirculation parameters in the burn wound were studied by laser Doppler flowmetry before and after tangential necrectomy and in healthy skin of the same anatomical region.RESULTS Statistically significant differences (pβ€0.001) were found between microcirculation parameters in the center of the burn wound after tangential necrectomy and in the control area of intact skin. In this case, the results of autodermal transplantation were characterized by a skin engraftment rate of up to 60β70%. In those areas of the body where there were no differences between microcirculation parameters , the engraftment exceeded 80%.CONCLUSION Assessment of microcirculation by laser Doppler flowmetry can be a reliable method for diagnosing the condition and viability of a burn wound after tangential excision of dead tissues in the early stages of treatment β before the formation of a demarcation line. The diagnostic technique is easy to use, but requires skills in working with a flowmeter, unification of such devices and methods for their use in the practice of surgical treatment of burns.ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΠ΅ΡΠ°Π²Π½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΡ ΠΈ ΠΌΠΎΠ·Π°ΠΈΡΠ½ΠΎΡΡΡ ΠΏΠΎ Π³Π»ΡΠ±ΠΈΠ½Π΅ ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΠΎΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΊΠΎΠΆΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΠΏΡΠ΅ΡΠΈΠ·ΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΊΡΡΠΊΡΠΎΠΌΠΈΠΈ Π² ΡΠ°Π½Π½ΠΈΠ΅ ΡΡΠΎΠΊΠΈ ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π²ΠΌΡ. ΠΠ΅ΡΠ°Π΄ΠΈΠΊΠ°Π»ΡΠ½Π°Ρ Π½Π΅ΠΊΡΡΠΊΡΠΎΠΌΠΈΡ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π»ΠΈΠ·ΠΈΡΡ ΠΏΠ΅ΡΠ΅ΡΠ°ΠΆΠ΅Π½Π½ΡΡ
Π°ΡΡΠΎΠ΄Π΅ΡΠΌΠΎΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΎΠ². ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π°ΠΊΡΡΠ°Π»ΡΠ½Π° Π΄Π°Π½Π½Π°Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠ° Π² Π»Π΅ΡΠ΅Π½ΠΈΠΈ ΠΏΠΎΡΡΡΠ°Π΄Π°Π²ΡΠΈΡ
Ρ ΠΎΠ±ΡΠΈΡΠ½ΡΠΌΠΈ Π΄Π΅ΡΠΌΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΈ Π³Π»ΡΠ±ΠΎΠΊΠΈΠΌΠΈ ΠΎΠΆΠΎΠ³Π°ΠΌΠΈ.Π¦Π΅Π»Ρ ΠΠ·ΡΡΠΈΡΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ Π² ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°Π½Π΅ ΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ Π°ΡΡΠΎΠ΄Π΅ΡΠΌΠΎΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎΡΠ»Π΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΊΡΡΠΊΡΠΎΠΌΠΈΠΈ.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ Π₯ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π»Π΅ΡΠ΅Π½ΠΈΠ΅ 74 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΎΠ±ΡΠΈΡΠ½ΡΠΌΠΈ ΠΎΠΆΠΎΠ³Π°ΠΌΠΈ ΠΊΠΎΠΆΠΈ, Π²ΠΊΠ»ΡΡΠ΅Π½Π½ΡΡ
Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΎΡΡΡΠ΅ΡΡΠ²Π»ΡΠ»ΠΈ ΠΏΡΡΠ΅ΠΌ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΊΡΡΠΊΡΠΎΠΌΠΈΠΈ Ρ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π°ΡΡΠΎΠ΄Π΅ΡΠΌΠΎΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠ΅ΠΉ. ΠΡΠ΅ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΈ Π² ΡΠ°Π½Π½ΠΈΠ΅ ΡΡΠΎΠΊΠΈ (Π΄ΠΎ 10 ΡΡΡΠΎΠΊ) ΠΏΠΎΡΠ»Π΅ ΡΡΠ°Π²ΠΌΡ Π΄ΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π»ΠΈΠ½ΠΈΠΈ Π΄Π΅ΠΌΠ°ΡΠΊΠ°ΡΠΈΠΈ. ΠΠ°ΡΠ°ΠΌΠ΅ΡΡΡ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ Π² ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°Π½Π΅ ΠΈΠ·ΡΡΠ°Π»ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ Π΄ΠΎΠΏΠΏΠ»Π΅ΡΠΎΠ²ΡΠΊΠΎΠΉ ΡΠ»ΠΎΡΠΌΠ΅ΡΡΠΈΠΈ Π΄ΠΎ ΠΈ ΠΏΠΎΡΠ»Π΅ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΊΡΡΠΊΡΠΎΠΌΠΈΠΈ ΠΈ Π² Π·Π΄ΠΎΡΠΎΠ²ΠΎΠΉ ΠΊΠΎΠΆΠ΅ ΡΠΎΠΉ ΠΆΠ΅ Π°Π½Π°ΡΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΡΡΠ²Π»Π΅Π½Ρ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈ Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΡ (ΠΏΡΠΈ pβ€0,001) ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΠΎ Π² ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°Π½Π΅ ΠΏΠΎΡΠ»Π΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΈΡ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠΉ Π½Π΅ΠΊΡΡΠΊΡΠΎΠΌΠΈΠΈ ΠΈ Π½Π° ΠΊΠΎΠ½ΡΡΠΎΠ»ΡΠ½ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ Π½Π΅ΠΏΠΎΠ²ΡΠ΅ΠΆΠ΄Π΅Π½Π½ΠΎΠΉ ΠΊΠΎΠΆΠΈ. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π°ΡΡΠΎΠ΄Π΅ΡΠΌΠΎΡΡΠ°Π½ΡΠΏΠ»Π°Π½ΡΠ°ΡΠΈΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π»ΠΈΡΡ ΡΠ°ΡΡΠΎΡΠΎΠΉ ΠΏΡΠΈΠΆΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΊΠΎΠΆΠΈ Π΄ΠΎ 60β70%. Π ΡΠ΅Ρ
ΠΎΠ±Π»Π°ΡΡΡΡ
ΡΠ΅Π»Π°, Π³Π΄Π΅ ΡΠ°Π·Π»ΠΈΡΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠΌΠΈ ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ Π½Π΅ Π±ΡΠ»ΠΎ, ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΏΡΠΈΠΆΠΈΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π²ΡΡΠΈΠ»ΠΈ 80%.ΠΡΠ²ΠΎΠ΄Ρ ΠΡΠ΅Π½ΠΊΠ° ΠΌΠΈΠΊΡΠΎΡΠΈΡΠΊΡΠ»ΡΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»Π°Π·Π΅ΡΠ½ΠΎΠΉ Π΄ΠΎΠΏΠΏΠ»Π΅ΡΠΎΠ²ΡΠΊΠΎΠΉ ΡΠ»ΠΎΡΠΌΠ΅ΡΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ ΡΠ²ΠΈΡΡΡΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΈ ΠΆΠΈΠ·Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΠΈ ΠΎΠΆΠΎΠ³ΠΎΠ²ΠΎΠΉ ΡΠ°Π½Ρ ΠΏΠΎΡΠ»Π΅ ΡΠ°Π½Π³Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠ³ΠΈΠ±ΡΠΈΡ
ΡΠΊΠ°Π½Π΅ΠΉ Π² ΡΠ°Π½Π½ΠΈΠ΅ ΡΡΠΎΠΊΠΈ Π»Π΅ΡΠ΅Π½ΠΈΡ β Π΄ΠΎ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π΅ΠΌΠ°ΡΠΊΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΏΡΠΎΡΡΠ° Π² ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠΈ, ΠΎΠ΄Π½Π°ΠΊΠΎ ΡΡΠ΅Π±ΡΠ΅Ρ Π½Π°Π²ΡΠΊΠΎΠ² ΡΠ°Π±ΠΎΡΡ Ρ ΡΠ»ΡΠΎΠΌΠ΅ΡΡΠΎΠΌ, ΡΠ½ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΡΠ°ΠΊΠΈΡ
ΠΏΡΠΈΠ±ΠΎΡΠΎΠ² ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊ ΠΈΡ
ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ Ρ
ΠΈΡΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΎΠΆΠΎΠ³ΠΎΠ²