326 research outputs found
NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels
This is a second paper in our ongoing calculation of the
next-to-next-to-leading order (NNLO) QCD correction to the total inclusive
top-pair production cross-section at hadron colliders. In this paper we
calculate the reaction which was not considered
in our previous work on due to its phenomenologically
negligible size. We also calculate all remaining fermion-pair-initiated
partonic channels and that contribute to top-pair
production starting from NNLO. The contributions of these reactions to the
total cross-section for top-pair production at the Tevatron and LHC are small,
at the permil level. The most interesting feature of these reactions is their
characteristic logarithmic rise in the high energy limit. We compute the
constant term in the leading power behavior in this limit, and achieve
precision that is an order of magnitude better than the precision of a recent
theoretical prediction for this constant. All four partonic reactions computed
in this paper are included in our numerical program Top++. The calculation of
the NNLO corrections to the two remaining partonic reactions,
and , is ongoing.Comment: 1+16 pages; 3 figure
RG-improved single-particle inclusive cross sections and forward-backward asymmetry in production at hadron colliders
We use techniques from soft-collinear effective theory (SCET) to derive
renormalization-group improved predictions for single-particle inclusive (1PI)
observables in top-quark pair production at hadron colliders. In particular, we
study the top-quark transverse-momentum and rapidity distributions, the
forward-backward asymmetry at the Tevatron, and the total cross section at
NLO+NNLL order in resummed perturbation theory and at approximate NNLO in fixed
order. We also perform a detailed analysis of power corrections to the leading
terms in the threshold expansion of the partonic hard-scattering kernels. We
conclude that, although the threshold expansion in 1PI kinematics is
susceptible to numerically significant power corrections, its predictions for
the total cross section are in good agreement with those obtained by
integrating the top-pair invariant-mass distribution in pair invariant-mass
kinematics, as long as a certain set of subleading terms appearing naturally
within the SCET formalism is included.Comment: 55 pages, 14 figures, 6 table
The cusp anomalous dimension at three loops and beyond
We derive an analytic formula at three loops for the cusp anomalous dimension
Gamma_cusp(phi) in N=4 super Yang-Mills. This is done by exploiting the
relation of the latter to the Regge limit of massive amplitudes. We comment on
the corresponding three loops quark anti-quark potential. Our result also
determines a considerable part of the three-loop cusp anomalous dimension in
QCD. Finally, we consider a limit in which only ladder diagrams contribute to
physical observables. In that limit, a precise agreement with strong coupling
is observed.Comment: 34 pages, 6 figures. v2: references added, typos correcte
Left-right symmetry at LHC and precise 1-loop low energy data
Despite many tests, even the Minimal Manifest Left-Right Symmetric Model
(MLRSM) has never been ultimately confirmed or falsified. LHC gives a new
possibility to test directly the most conservative version of left-right
symmetric models at so far not reachable energy scales. If we take into account
precise limits on the model which come from low energy processes, like the muon
decay, possible LHC signals are strongly limited through the correlations of
parameters among heavy neutrinos, heavy gauge bosons and heavy Higgs particles.
To illustrate the situation in the context of LHC, we consider the "golden"
process . For instance, in a case of degenerate heavy neutrinos
and heavy Higgs masses at 15 TeV (in agreement with FCNC bounds) we get
fb at TeV which is consistent with muon
decay data for a very limited masses in the range (3008 GeV, 3040 GeV).
Without restrictions coming from the muon data, masses would be in the
range (1.0 TeV, 3.5 TeV). Influence of heavy Higgs particles themselves on the
considered LHC process is negligible (the same is true for the light, SM
neutral Higgs scalar analog). In the paper decay modes of the right-handed
heavy gauge bosons and heavy neutrinos are also discussed. Both scenarios with
typical see-saw light-heavy neutrino mixings and the mixings which are
independent of heavy neutrino masses are considered. In the second case heavy
neutrino decays to the heavy charged gauge bosons not necessarily dominate over
decay modes which include only light, SM-like particles.Comment: 16 pages, 10 figs, KL-KS and new ATLAS limits taken into accoun
Complete off-shell effects in top quark pair hadroproduction with leptonic decay at next-to-leading order
Results for next-to-leading order QCD corrections to the pp(p\bar{p}) -> t
\bar{t} -> W^+W^- b\bar{b} -> e^{+} \nu_{e} \mu^{-} \bar{\nu}_{\mu} b \bar{b}
+X processes with complete off-shell effects are presented for the first time.
Double-, single- and non-resonant top contributions of the order
{\cal{O}}(\alpha_{s}^3 \alpha^4) are consistently taken into account, which
requires the introduction of a complex-mass scheme for unstable top quarks.
Moreover, the intermediate W bosons are treated off-shell. Comparison to the
narrow width approximation for top quarks, where non-factorizable corrections
are not accounted for is performed. Besides the total cross section and its
scale dependence, several differential distributions at the TeVatron run II and
the LHC are given. In case of the TeVatron the forward-backward asymmetry of
the top is recalculated afresh. With inclusive selection cuts, the
forward-backward asymmetry amounts to A^{t}_{FB} = 0.051 +/- 0.0013.
Furthermore, the corrections with respect to leading order are positive and of
the order 2.3% for the TeVatron and 47% for the LHC. A study of the scale
dependence of our NLO predictions indicates that the residual theoretical
uncertainty due to higher order corrections is 8% for the TeVatron and 9% for
the LHC.Comment: 35 pages, 39 figures, 3 tables. References and note added, version to
appear in JHE
Galaxy Cluster Scaling Relations between Bolocam Sunyaev-Zel'dovich Effect and Chandra X-ray Measurements
We present scaling relations between the integrated Sunyaev-Zel'dovich Effect
(SZE) signal, , its X-ray analogue, , and total mass, , for the 45 galaxy clusters in
the Bolocam X-ray-SZ (BOXSZ) sample. All parameters are integrated within
. values are measured using SZE data collected with
Bolocam, operating at 140 GHz at the Caltech Submillimeter Observatory (CSO).
The temperature, , and mass, , of the intracluster
medium are determined using X-ray data collected with Chandra, and is derived from assuming a constant gas mass fraction. Our
analysis accounts for several potential sources of bias, including: selection
effects, contamination from radio point sources, and the loss of SZE signal due
to noise filtering and beam-smoothing effects. We measure the
-- scaling to have a power-law index of , and
a fractional intrinsic scatter in of at fixed , both of which are consistent with previous analyses. We also measure the
scaling between and , finding a power-law index of
and a fractional intrinsic scatter in at fixed mass of
. While recent SZE scaling relations using X-ray mass proxies have
found power-law indices consistent with the self-similar prediction of 5/3, our
measurement stands apart by differing from the self-similar prediction by
approximately 5. Given the good agreement between the measured
-- scalings, much of this discrepancy appears to be caused
by differences in the calibration of the X-ray mass proxies adopted for each
particular analysis.Comment: 31 pages, 15 figures, accepted by ApJ 04/11/2015. This version is
appreciably different from the original submission: it includes an entirely
new appendix, extended discussion, and much of the material has been
reorganize
Yangian Symmetry at Two Loops for the su(2|1) Sector of N=4 SYM
We present the perturbative Yangian symmetry at next-to-leading order in the
su(2|1) sector of planar N=4 SYM. Just like the ordinary symmetry generators,
the bi-local Yangian charges receive corrections acting on several neighboring
sites. We confirm that the bi-local Yangian charges satisfy the necessary
conditions: they transform in the adjoint of su(2|1), they commute with the
dilatation generator, and they satisfy the Serre relations. This proves that
the sector is integrable at two loops.Comment: 13 pages, v2: minor correction
143 GHz brightness measurements of Uranus, Neptune, and other secondary calibrators with Bolocam between 2003 and 2010
Bolocam began collecting science data in 2003 as the long-wavelength imaging
camera at the Caltech Submillimeter Observatory. The planets, along with a
handful of secondary calibrators, have been used to determine the flux
calibration for all of the data collected with Bolocam. Uranus and Neptune
stand out as the only two planets that are bright enough to be seen with high
signal-to-noise in short integrations without saturating the standard Bolocam
readout electronics. By analyzing all of the 143 GHz observations made with
Bolocam between 2003 and 2010, we find that the brightness ratio of Uranus to
Neptune is 1.027 +- 0.006, with no evidence for any variations over that
period. Including previously published results at \simeq 150 GHz, we find a
brightness ratio of 1.029 +- 0.006 with no evidence for time variability over
the period 1983-2010. Additionally, we find no evidence for time-variability in
the brightness ratio of either Uranus or Neptune to the ultracompact HII region
G34.3 or the protostellar source NGC 2071IR. Using recently published WMAP
results we constrain the absolute 143 GHz brightness of both Uranus and Neptune
to ~3%. Finally, we present ~3% absolute 143 GHz peak flux density values for
the ultracompact HII regions G34.3 and K3-50A and the protostellar source NGC
2071IR.Comment: updated based on referee's comments, published in Ap
NLO QCD corrections to off-shell top-antitop production with leptonic decays at hadron colliders
We present details of a calculation of the cross section for hadronic
top-antitop production in next-to-leading order (NLO) QCD, including the decays
of the top and antitop into bottom quarks and leptons. This calculation is
based on matrix elements for \nu e e+ \mu- \bar{\nu}_{\mu}b\bar{b} production
and includes all non-resonant diagrams, interferences, and off-shell effects of
the top quarks. Such contributions are formally suppressed by the top-quark
width and turn out to be small in the inclusive cross section. However, they
can be strongly enhanced in exclusive observables that play an important role
in Higgs and new-physics searches. Also non-resonant and off-shell effects due
to the finite W-boson width are investigated in detail, but their impact is
much smaller than naively expected. We also introduce a matching approach to
improve NLO calculations involving intermediate unstable particles. Using a
fixed QCD scale leads to perturbative instabilities in the high-energy tails of
distributions, but an appropriate dynamical scale stabilises NLO predictions.
Numerical results for the total cross section, several distributions, and
asymmetries are presented for Tevatron and the LHC at 7 TeV, 8 TeV, and 14 TeV.Comment: 61 pp. Matches version published in JHEP; one more reference adde
High Spectral Resolution Measurement of the Sunyaev–Zel'dovich Effect Null with Z-Spec
The Sunyaev-Zel'dovich (SZ) effect spectrum crosses through a null where ΔT_CMB = 0 near ν_0 = 217 GHz. In a cluster of galaxies, ν0 can be shifted from the canonical thermal SZ effect value by corrections to the SZ effect scattering due to the properties of the inter-cluster medium. We have measured the SZ effect in the hot galaxy cluster RX J 1347.5 – 1145 with Z-Spec, an R ~ 300 grating spectrometer sensitive between 185 and 305 GHz. These data comprise a high spectral resolution measurement around the null of the SZ effect and clearly exhibit the transition from negative to positive ΔT_CMB over the Z-Spec band. The SZ null position is measured to be ν_0 = 225.8 ± 2.5(stat.) ± 1.2(sys.) GHz, which differs from the canonical null frequency by 3.0σ and is evidence for modifications to the canonical thermal SZ effect shape. Assuming the measured shift in ν0 is due only to relativistic corrections to the SZ spectrum, we place the limit kT_e = 17.1 ± 5.3 keV from the zero-point measurement alone. By simulating the response of the instrument to the sky, we are able to generate likelihood functions in {y_0, T_e, v_pec} space. For v_pec = 0 km s^(–1), we measure the best-fitting SZ model to be y_0 = 4.6^(+0.6)_(–0.9) × 10^(–4), T_e, 0 = 15.2^(+12)_(–7.4) keV. When v pec is allowed to vary, a most probable value of v_pec = + 450 ± 810 km s^(–1) is found
- …