121 research outputs found

    Higher-Order Gauss-Bonnet Cosmology

    Full text link
    We study cosmological models derived from higher-order Gauss-Bonnet gravity F(R,G)F(R,G) by using the Lagrange multiplier approach without assuming the presence of additional fields with the exception of standard perfect fluid matter. The presence of Lagrange multipliers reduces the number of allowed solutions. We need to introduce compatibility conditions of the FRW equations, which impose strict restrictions on the metric or require the introduction of additional exotic matter. Several classes of F(R,G)F(R,G) models are generated and discussed.Comment: 8 pages, to appear in Astro. Space Sc

    Post-Newtonian Parameters from Alternative Theories of Gravity

    Full text link
    Alternative theories of gravity have been recently studied in connection with their cosmological applications, both in the Palatini and in the metric formalism. The aim of this paper is to propose a theoretical framework (in the Palatini formalism) to test these theories at the solar system level and possibly at the galactic scales. We exactly solve field equations in vacuum and find the corresponding corrections to the standard general relativistic gravitational field. On the other hand, approximate solutions are found in matter cases starting from a Lagrangian which depends on a phenomenological parameter. Both in the vacuum case and in the matter case the deviations from General Relativity are controlled by parameters that provide the Post-Newtonian corrections which prove to be in good agreement with solar system experiments.Comment: 17 pages, no figure

    Fluorescein for resection of high-grade gliomas: A safety study control in a single center and review of the literature

    Get PDF
    Background: The importance of a complete resection of high-grade gliomas (HGGs) has been highlighted in scientific literature, in order to limit tumor recurrence and above all to improve disease-free survival rates. Several fluorescent biomarkers have been tested to improve intraoperative identification of residual tumor; 5-aminolevulinic acid (5-ALA) and fluorescein sodium (FS) are now starting to play a central role in glioma surgery. We performed a retrospective analysis on 47 patients operated for HGGs. Here we report our preliminary data. Methods: Data of 47 consecutive patients with HGG have been collected in our study (25 males, 22 females; mean age: 60.3 years, range: 27-86 years). Fluorescein (5 mg/kg of body weight) was injected intravenously right after the induction of general anesthesia. A YELLOW 560 filter was used on an OPMI Pentero 900 microscope (Carl Zeiss Meditec, Oberkochen, Germany) to complete a microsurgical tumor removal. Glioma resection and quality of life were evaluated preoperative and postoperatively. Results: Gross total resection (GTR) was achieved in 53.2% (n = 25) of patients. A subtotal resection (STR) (>95%) was achieved in 29.8% (n = 14), while a partial resection (PR) (<95%) was obtained in 17% (n = 8) of patients. Overall, in 83% (n = 39) of patients who underwent fluorescence-guided surgery the resection rate achieved was >95%. No adverse effects correlated to fluorescein have been recorded. Conclusion: Fluorescein seems to be safe and effective in the resection of HGGs, allowing a high rate of gross total removal of contrast enhanced areas

    Universality of Einstein Equations for the Ricci Squared Lagrangians

    Get PDF
    It has been recently shown that, in the first order (Palatini) formalism, there is universality of Einstein equations and Komar energy-momentum complex, in the sense that for a generic nonlinear Lagrangian depending only on the scalar curvature of a metric and a torsionless connection one always gets Einstein equations and Komar's expression for the energy-momentum complex. In this paper a similar analysis (also in the framework of the first order formalism) is performed for all nonlinear Lagrangians depending on the (symmetrized) Ricci square invariant. The main result is that the universality of Einstein equations and Komar energy-momentum complex also extends to this case (modulo a conformal transformation of the metric).Comment: 21 pages, Late

    Equilibrium hydrostatic equation and Newtonian limit of the singular f(R) gravity

    Get PDF
    We derive the equilibrium hydrostatic equation of a spherical star for any gravitational Lagrangian density of the form L=gf(R)L=\sqrt{-g}f(R). The Palatini variational principle for the Helmholtz Lagrangian in the Einstein gauge is used to obtain the field equations in this gauge. The equilibrium hydrostatic equation is obtained and is used to study the Newtonian limit for f(R)=Ra23Rf(R)=R-\frac{a^{2}}{3R}. The same procedure is carried out for the more generally case f(R)=R1n+2an+1Rnf(R)=R-\frac{1}{n+2}\frac{a^{n+1}}{R^{n}} giving a good Newtonian limit.Comment: Revised version, to appear in Classical and Quantum Gravity

    Hamiltonian, Energy and Entropy in General Relativity with Non-Orthogonal Boundaries

    Get PDF
    A general recipe to define, via Noether theorem, the Hamiltonian in any natural field theory is suggested. It is based on a Regge-Teitelboim-like approach applied to the variation of Noether conserved quantities. The Hamiltonian for General Relativity in presence of non-orthogonal boundaries is analysed and the energy is defined as the on-shell value of the Hamiltonian. The role played by boundary conditions in the formalism is outlined and the quasilocal internal energy is defined by imposing metric Dirichlet boundary conditions. A (conditioned) agreement with previous definitions is proved. A correspondence with Brown-York original formulation of the first principle of black hole thermodynamics is finally established.Comment: 29 pages with 1 figur

    Peripheral facial palsy following ventriculoperitoneal shunt. The lesson we have learned

    Get PDF
    The most frequent complications after shunt surgery are infective and obstructive. Other types are less common, and eventually occur due to technical errors during brain ventricular puncture, opening the intraperitoneal cavity or the tunnelling of the catheter between the two points. Although rare, there are well-reported complications related to the poor positioning of the distal catheter, with perforation of organs and tissues. We report a very rare case of a male patient with normal pressure hydrocephalus submitted to ventriculoperitoneal shunt. During tunnelling of the shunt stylet, a peripheral facial palsy due to injury to the extra cranial segment of the facial nerve occurred. To the best of our knowledge this is the second case described in Literature. The patient and the surgeon should be aware of this very rare but possible complication in shunt surgery being careful to the course of the facial nerve in the mastoid region

    Substantia Nigra Volumetry with 3-T MRI in De Novo and Advanced Parkinson Disease

    Get PDF
    Background: Magnetization transfer–prepared T1-weighted MRI can depict a hyperintense subregion of the substantia nigra involved in the degeneration process of Parkinson disease. / Purpose: To evaluate quantitative measurement of substantia nigra volume by using MRI to support clinical diagnosis and staging of Parkinson disease. / Materials and Methods: In this prospective study, a high-spatial-resolution magnetization transfer–prepared T1-weighted volumetric sequence was performed with a 3-T MRI machine between January 2014 and October 2015 for participants with de novo Parkinson disease, advanced Parkinson disease, and healthy control participants. A reproducible semiautomatic quantification analysis method that entailed mesencephalic intensity as an internal reference was used for hyperintense substantia nigra volumetry normalized to intracranial volume. A general linear model with age and sex as covariates was used to compare the three groups. / Results: Eighty participants were evaluated: 20 healthy control participants (mean age ± standard deviation, 56 years ± 11; 11 women), 29 participants with de novo Parkinson disease (64 years ± 10; 19 men), and 31 participants with advanced Parkinson disease (60 years ± 9; 16 women). Volumetric measurement of hyperintense substantia nigra from magnetization transfer–prepared T1-weighted MRI helped differentiate healthy control participants from participants with advanced Parkinson disease (mean difference for ipsilateral side, 64 mm3 ± 14, P < .001; mean difference for contralateral side, 109 mm3 ± 14, P < .001) and helped distinguish healthy control participants from participants with de novo Parkinson disease (mean difference for ipsilateral side, 45 mm3 ± 15, P < .01; mean difference for contralateral side, 66 mm3 ± 15, P < .001) and participants with de novo Parkinson disease from those with advanced Parkinson disease (mean difference for ipsilateral side, 20 mm3 ± 13, P = .40; mean difference for contralateral side, 43 mm3 ± 13, P = .004). / Conclusion: Magnetization transfer–prepared T1-weighted MRI volumetry of the substantia nigra helped differentiate the stages of Parkinson disease

    Duality of Quasilocal Gravitational Energy and Charges with Non-orthogonal Boundaries

    Get PDF
    We study the duality of quasilocal energy and charges with non-orthogonal boundaries in the (2+1)-dimensional low-energy string theory. Quasilocal quantities shown in the previous work and some new variables arisen from considering the non-orthogonal boundaries as well are presented, and the boost relations between those quantities are discussed. Moreover, we show that the dual properties of quasilocal variables such as quasilocal energy density, momentum densities, surface stress densities, dilaton pressure densities, and Neuve-Schwarz(NS) charge density, are still valid in the moving observer's frame.Comment: 19pages, 1figure, RevTe
    corecore