1,458 research outputs found
The Relativistic Three-Body Bound State in Three-Dimensions
Studying of the relativistic three-body bound state in a three-dimensional
(3D) approach is a necessary first step in a process to eventually perform
scattering calculations at GeV energies, where partial-wave expansions are not
useful. To this aim we recently studied relativistic effects in the binding
energy and for the first time, obtained the relativistic 3B wave function
\cite{Hadizadeh_PRC90}. The relativistic Faddeev integral equations for the
bound state are formulated in terms of momentum vectors, and relativistic
invariance is incorporated within the framework of Poincar\'e invariant quantum
mechanics.Comment: Contribution to the 21st International Conference on Few-Body
Problems in Physics, Chicago, Illinois, US
Positivity of Entropy in the Semi-Classical Theory of Black Holes and Radiation
Quantum stress-energy tensors of fields renormalized on a Schwarzschild
background violate the classical energy conditions near the black hole.
Nevertheless, the associated equilibrium thermodynamical entropy by
which such fields augment the usual black hole entropy is found to be positive.
More precisely, the derivative of with respect to radius, at fixed
black hole mass, is found to vanish at the horizon for {\it all} regular
renormalized stress-energy quantum tensors. For the cases of conformal scalar
fields and U(1) gauge fields, the corresponding second derivative is positive,
indicating that has a local minimum there. Explicit calculation
shows that indeed increases monotonically for increasing radius and
is positive. (The same conclusions hold for a massless spin 1/2 field, but the
accuracy of the stress-energy tensor we employ has not been confirmed, in
contrast to the scalar and vector cases). None of these results would hold if
the back-reaction of the radiation on the spacetime geometry were ignored;
consequently, one must regard as arising from both the radiation
fields and their effects on the gravitational field. The back-reaction, no
matter how "small",Comment: 19 pages, RevTe
Evaporation of a Kerr black hole by emission of scalar and higher spin particles
We study the evolution of an evaporating rotating black hole, described by
the Kerr metric, which is emitting either solely massless scalar particles or a
mixture of massless scalar and nonzero spin particles. Allowing the hole to
radiate scalar particles increases the mass loss rate and decreases the angular
momentum loss rate relative to a black hole which is radiating nonzero spin
particles. The presence of scalar radiation can cause the evaporating hole to
asymptotically approach a state which is described by a nonzero value of . This is contrary to the conventional view of black hole
evaporation, wherein all black holes spin down more rapidly than they lose
mass. A hole emitting solely scalar radiation will approach a final asymptotic
state described by . A black hole that is emitting scalar
particles and a canonical set of nonzero spin particles (3 species of
neutrinos, a single photon species, and a single graviton species) will
asymptotically approach a nonzero value of only if there are at least 32
massless scalar fields. We also calculate the lifetime of a primordial black
hole that formed with a value of the rotation parameter , the minimum
initial mass of a primordial black hole that is seen today with a rotation
parameter , and the entropy of a black hole that is emitting scalar or
higher spin particles.Comment: 22 pages, 13 figures, RevTeX format; added clearer descriptions for
variables, added journal referenc
Effective Potential of a Black Hole in Thermal Equilibrium with Quantum Fields
Expectation values of one-loop renormalized thermal equilibrium stress-energy
tensors of free conformal scalars, spin- fermions and U(1) gauge
fields on a Schwarzschild black hole background are used as sources in the
semi-classical Einstein equation. The back-reaction and new equilibrium metric
are solved for at for each spin field. The nature of the modified
black hole spacetime is revealed through calculations of the effective
potential for null and timelike orbits. Significant novel features affecting
the motions of both massive and massless test particles show up at lowest order
in , where is the renormalized black hole mass,
and is the Planck mass. Specifically, we find the tendency for
\underline{stable} circular photon orbits, an increase in the black hole
capture cross sections, and the existence of a gravitationally repulsive region
associated with the black hole which is generated from the U(1) back-reaction.
We also consider the back-reaction arising from multiple fields, which will be
useful for treating a black hole in thermal equilibrium with field ensembles
belonging to gauge theories.Comment: 25 pages (not including seven figures), VAND-TH-93-6. Typed in Latex,
uses RevTex macro
First Order Relativistic Three-Body Scattering
Relativistic Faddeev equations for three-body scattering at arbitrary
energies are formulated in momentum space and in first order in the two-body
transition-operator directly solved in terms of momentum vectors without
employing a partial wave decomposition. Relativistic invariance is incorporated
within the framework of Poincare invariant quantum mechanics, and presented in
some detail.
Based on a Malfliet-Tjon type interaction, observables for elastic and
break-up scattering are calculated up to projectile energies of 1 GeV. The
influence of kinematic and dynamic relativistic effects on those observables is
systematically studied. Approximations to the two-body interaction embedded in
the three-particle space are compared to the exact treatment.Comment: 26 pages, 13 figure
Poincar\'e Invariant Three-Body Scattering at Intermediate Energies
The relativistic Faddeev equation for three-nucleon scattering is formulated
in momentum space and directly solved in terms of momentum vectors without
employing a partial wave decomposition. The equation is solved through Pad\'e
summation, and the numerical feasibility and stability of the solution is
demonstrated. Relativistic invariance is achieved by constructing a dynamical
unitary representation of the Poincar\'e group on the three-nucleon Hilbert
space. Based on a Malfliet-Tjon type interaction, observables for elastic and
break-up scattering are calculated for projectile energies in the intermediate
energy range up to 2 GeV, and compared to their nonrelativistic counterparts.
The convergence of the multiple scattering series is investigated as a function
of the projectile energy in different scattering observables and
configurations. Approximations to the two-body interaction embedded in the
three-particle space are compared to the exact treatment.Comment: 16 pages, 13 figure
Two-pion exchange potential and the amplitude
We discuss the two-pion exchange potential which emerges from a box diagram
with one nucleon (the spectator) restricted to its mass shell, and the other
nucleon line replaced by a subtracted, covariant scattering amplitude
which includes , Roper, and isobars, as well as contact terms
and off-shell (non-pole) dressed nucleon terms. The amplitude satisfies
chiral symmetry constraints and fits data below 700 MeV pion
energy. We find that this TPE potential can be well approximated by the
exchange of an effective sigma and delta meson, with parameters close to the
ones used in one-boson-exchange models that fit data below the pion
production threshold.Comment: 9 pages (RevTex) and 7 postscript figures, in one uuencoded gzipped
tar fil
- …