3,036 research outputs found

    Probe for the strong parity violation effects at RHIC with three particle correlations

    Full text link
    In non-central relativistic heavy ion collisions, \P-odd domains, which might be created in the process of the collision, are predicted to lead to charge separation along the system orbital momentum \cite{Kharzeev:2004ey}. An observable, \P-even, but directly sensitive to the charge separation effect, has been proposed in \cite{Voloshin:2004vk} and is based on 3-particle mixed harmonics azimuthal correlations. We report the STAR measurements using this observable for Au+Au and Cu+Cu collisions at sNN\sqrt{s_{NN}}=200 and 62 GeV. The results are reported as function of collision centrality, particle separation in rapidity, and particle transverse momentum. Effects that are not related to parity violation but might contribute to the signal are discussed.Comment: 4 pages, Quark Matter 2008 Poster proceeding

    On the two-photon decay width of the sigma meson

    Full text link
    We shortly report on the two-photon decay width of the light σ\sigma-meson interpreted as a quarkonium state. Results are given in dependence on the σ\sigma-mass and the constituent mass of the light quark. The triangle quark-loop diagram, responsible for the two-photon transition, is carefully evaluated: a term in the transition amplitude, often omitted in literature, results in destructive interference with the leading term. As a result we show that the two-photon decay width of the σ\sigma in the quarkonium picture is less than 1 keV for the physical range of parameters.Comment: 6 pages, 4 figure

    Non-Perturbative Production of Multi-Boson States and Quantum Bubbles

    Full text link
    The amplitude of production of nn on-mass-shell scalar bosons by a highly virtual field ϕ\phi is considered in a λϕ4\lambda \phi^4 theory with weak coupling λ\lambda and spontaneously broken symmetry. The amplitude of this process is known to have an n!n! growth when the produced bosons are exactly at rest. Here it is shown that for n1/λn \gg 1/\lambda the process goes through `quantum bubbles', i.e. quantized droplets of a different vacuum phase, which are non-perturbative resonant states of the field ϕ\phi. The bubbles provide a form factor for the production amplitude, which rapidly decreases above the threshold. As a result the probability of the process may be heavily suppressed and may decrease with energy EE as exp(constEa)\exp (-const \cdot E^a), where the power aa depends on the number of space dimensions. Also discussed are the quantized states of bubbles and the amplitudes of their formation and decay.Comment: 20 pages in LaTeX + 3 figures (fugures not included, hardcopy available on request), TPI-MINN-93/20-

    Multiparticle tree amplitudes in scalar field theory

    Get PDF
    Following an argument advanced by Feynman, we consider a method for obtaining the effective action which generates the sum of tree diagrams with external physical particles. This technique is applied, in the unbroken \lambda \phi^4 theory, to the derivation of the threshold amplitude for the production of nn scalar particles by nn initial particles. The leading contributions to the tree amplitude, which become singular in the threshold limit, exhibit a factorial growth with n.Comment: uuencoded gz-compressed file created by csh script uufile

    Simply Modeling Meson HQET

    Full text link
    A simple relativistic model of heavy-quark-light-quark mesons is proposed. In an expansion in inverse powers of the heavy quark mass we find that all zeroth and first order heavy quark symmetry relations are satisfied. The main results are: - the difference between the meson mass and the heavy quark mass plays a significant role even at zeroth order; - the slope of the Isgur-Wise function at the zero recoil point is typically less than 1-1; - the first order correction to the pseudoscalar decay constant is large and negative; - the four universal functions describing the first order corrections to the semileptonic decay form factors are small; - these latter corrections are quite insensitive to the choice of model parameters, and in particular to the effects of hyperfine mass splitting.Comment: 17 pages, LaTeX, 3 LaTeX figures in separate file, UTPT-92-16. This is the version published long ago but not previously archive

    Quark structure of hadrons and high energy collisions

    Get PDF
    There exists a large field for phenomenological models in which the knowledge of the structure of hadrons in terms of QCD constituents obtained from deep inelastic scatterings is related to their behaviour in soft processes. One of the simplest and oldest models is the additive quark model, with the rules of quark statistics following from it. Originally, the relations of quark combinatorics for hadron yields were based on the qualitative description of a multiparticle production process as a process of the production of non-correlated quarks and antiquarks followed by their subsequent fusion into hadrons [20],[21]. As a large amount of new precision measurements appear, and, on the other hand, our understanding of QCD becomes deeper, a new level of understanding of quark-gluon physics in the region of soft interactions forces us to review the relations of quark combinatorics. To do so, an especially good possibility is provided by the experimental data for hadronic Z^0 decays which allow us to check the relations of quark combinatorics for a new type of processes: quark jets in the decays Z^0 -> q\bar{q} -> hadrons [32].Comment: 55 pages, 23 figure

    The Pole Mass of The Heavy Quark. Perturbation Theory and Beyond

    Full text link
    The key quantity of the heavy quark theory is the quark mass mQm_Q. Since quarks are unobservable one can suggest different definitions of mQm_Q. One of the most popular choices is the pole quark mass routinely used in perturbative calculations and in some analyses based on heavy quark expansions. We show that no precise definition of the pole mass can be given in the full theory once non-perturbative effects are included. Any definition of this quantity suffers from an intrinsic uncertainty of order \Lam /m_Q. This fact is succinctly described by the existence of an infrared renormalon generating a factorial divergence in the high-order coefficients of the αs\alpha_s series; the corresponding singularity in the Borel plane is situated at 2π/b2\pi /b. A peculiar feature is that this renormalon is not associated with the matrix element of a local operator. The difference \La \equiv M_{H_Q}-m_Q^{pole} can still be defined in Heavy Quark Effective Theory, but only at the price of introducing an explicit dependence on a normalization point μ\mu: \La (\mu ). Fortunately the pole mass mQ(0)m_Q(0) {\em per se} does not appear in calculable observable quantities.Comment: 22 pages, Latex, 6 figures (available upon request), TPI-MINN-94/4-T, CERN-TH.7171/94, UND-HEP-94-BI

    Non-Abelian Meissner Effect in Yang--Mills Theories at Weak Coupling

    Full text link
    We present a weak-coupling Yang--Mills model supporting non-Abelian magnetic flux tubes and non-Abelian confined magnetic monopoles. In the dual description the magnetic flux tubes are prototypes of the QCD strings. Dualizing the confined magnetic monopoles we get gluelumps which convert a "QCD string" in the excited state to that in the ground state. Introducing a mass parameter m we discover a phase transition between the Abelian and non-Abelian confinement at a critical value m=m_* of order of Lambda. Underlying dynamics are governed by a Z_N symmetry inherent to the model under consideration. At m>m_* the Z_N symmetry is spontaneously broken, resulting in N degenerate Z_N (Abelian) strings. At m<m_* the Z_N symmetry is restored, the degeneracy is lifted, and the strings become non-Abelian. We calculate tensions of the non-Abelian strings, as well as the decay rates of the metastable strings, at N >> 1.Comment: Reference [45] corrected. Final version, to appear in Phys. Rev.

    Directed flow as effect of transient matter rotation in hadron and nucleus collisions

    Full text link
    We discuss directed flow introduced for description of nucleus collisions and consider its possible behavior in hadronic and nuclei reactions due to rotation of the transient matter.Comment: 18 pages, 6 figure

    Functional determinants for radial operators

    Get PDF
    We derive simple new expressions, in various dimensions, for the functional determinant of a radially separable partial differential operator, thereby generalizing the one-dimensional result of Gel'fand and Yaglom to higher dimensions. We use the zeta function formalism, and the results agree with what one would obtain using the angular momentum cutoff method based on radial WKB. The final expression is numerically equal to an alternative expression derived in a Feynman diagrammatic approach, but is considerably simpler.Comment: 21 pages, uses axodraw.st
    corecore