7 research outputs found

    Engineered biomimetic nanovesicles show intrinsic anti-inflammatory properties for the treatment of inflammatory bowel diseases

    No full text
    Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is a chronic inflammatory condition of the gastrointestinal (GI) tract. Currently, it is treated with immunosuppressant or biologics that often induce severe adverse effects. Thus, there is an urgent clinical need for more specific treatments. To provide a valid therapeutic tool for IBD therapy, in this work we developed biomimetic nanovesicles by manipulating leukocyte membranes to exploit mechanisms of T-cell recruitment during inflammation. A subset of T-lymphocytes participates in homing to inflamed tissue in the gastrointestinal tract by overexpressing the α4β7 integrin, which is responsible for binding to its receptor on the endothelial membrane, the mucosal addressin cell adhesion molecule 1. Based on this principle, we engineered biomimetic vesicles, referred to as specialized leukosomes (SLKs), which are leukocyte-like carriers 'doped' with the α4β7 integrin over-induced in purified immune cells. We tested SLKs in an in vivo murine model of IBD induced by treatment with dextran sulfate sodium. Notably, treatment of IBD mice with SLKs allowed us to observe a reduction of inflammation (favorable modulation of both pro- and anti-inflammatory genes, as well as reduction of immune cells infiltration into the colon tissue), and a consequent enhanced intestinal repair (low epithelial damage). In this study, we demonstrate that biological-derived nanoparticles can be used not only as naturally targeted drug delivery systems, but also as nano-therapeutics endowed with intrinsic anti-inflammatory properties

    Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability

    No full text
    Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature

    Biomimetic proteolipid vesicles for targeting inflamed tissues

    No full text
    A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles-which we refer to as leukosomes-retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation

    Extracellular vesicles and their synthetic analogues in aging and age-associated brain diseases

    No full text
    corecore