8,454 research outputs found

    Ultraslow Electron Spin Dynamics in GaAs Quantum Wells Probed by Optically Pumped NMR

    Full text link
    Optically pumped nuclear magnetic resonance (OPNMR) measurements were performed in two different electron-doped multiple quantum well samples near the fractional quantum Hall effect ground state nu=1/3. Below 0.5K, the spectra provide evidence that spin-reversed charged excitations of the nu=1/3 ground state are localized over the NMR time scale of ~40 microseconds. Furthermore, by varying NMR pulse parameters, the electron spin temperature (as measured by the Knight shift) could be driven above the lattice temperature, which shows that the value of the electron spin-lattice relaxation time lies between 100 microseconds and 500 milliseconds at nu=1/3.Comment: 6 pages (REVTEX), 6 eps figures embedded in text; published version; minor changes to match published versio

    Thermopower of Two-Dimensional Electrons at ν\nu = 3/2 and 5/2

    Full text link
    The longitudinal thermopower of ultra-high mobility two-dimensional electrons has been measured at both zero magnetic field and at high fields in the compressible metallic state at filling factor ν=3/2\nu = 3/2 and the incompressible fractional quantized Hall state at ν=5/2\nu = 5/2. At zero field our results demonstrate that the thermopower is dominated by electron diffusion for temperatures below about T=150T = 150 mK. A diffusion dominated thermopower is also observed at ν=3/2\nu = 3/2 and allows us to extract an estimate of the composite fermion effective mass. At ν=5/2\nu = 5/2 both the temperature and magnetic field dependence of the observed thermopower clearly signal the presence of the energy gap of this fractional quantized Hall state. We find that the thermopower in the vicinity of ν=5/2\nu = 5/2 exceeds that recently predicted under the assumption that the entropy of the 2D system is dominated by non-abelian quasiparticle exchange statistics.Comment: 10 pages, 10 figures

    Observation of narrow-band noise accompanying the breakdown of insulating states in high Landau levels

    Get PDF
    Recent magnetotransport experiments on high mobility two-dimensional electron systems have revealed many-body electron states unique to high Landau levels. Among these are re-entrant integer quantum Hall states which undergo sharp transitions to conduction above some threshold field. Here we report that these transitions are often accompanied by narrow- and broad-band noise with frequencies which are strongly dependent on the magnitude of the applied dc current.Comment: 4 pages, 3 figure

    Transport and percolation in a low-density high-mobility two-dimensional hole system

    Full text link
    We present a study of the temperature and density dependence of the resistivity of an extremely high quality two-dimensional hole system grown on the (100) surface of GaAs. For high densities in the metallic regime (p\agt 4 \times 10^{9} cm−2^{-2}), the nonmonotonic temperature dependence (∼50−300\sim 50-300 mK) of the resistivity is consistent with temperature dependent screening of residual impurities. At a fixed temperature of TT= 50 mK, the conductivity vs. density data indicates an inhomogeneity driven percolation-type transition to an insulating state at a critical density of 3.8×1093.8\times 10^9 cm−2^{-2}.Comment: accepted for publication in PR

    Superlinear Increase of Photocurrent due to Stimulated Scattering into a Polariton Condensate

    Full text link
    We show that when a monopolar current is passed through an n-i-n structure, superlinear photocurrent response occurs when there is a polariton condensate. This is in sharp contrast to the previously observed behavior for a standard semiconductor laser. Theoretical modeling shows that this is due to a stimulated exciton-exciton scattering process in which one exciton relaxes into the condensate, while another one dissociates into an electron-hole pair.Comment: 17 pages with 10 figure

    Disorder mediated splitting of the cyclotron resonance in two-dimensional electron systems

    Full text link
    We perform a direct study of the magnitude of the anomalous splitting in the cyclotron resonance (CR) of a two-dimensional electron system (2DES) as a function of sample disorder. In a series of AlGaAs/GaAs quantum wells, identical except for a range of carbon doping in the well, we find the CR splitting to vanish at high sample mobilities but to increase dramatically with increasing impurity density and electron scattering rates. This observation lends strong support to the conjecture that the non-zero wavevector, roton-like minimum in the dispersion of 2D magnetoplasmons comes into resonance with the CR, with the two modes being coupled via disorder.Comment: accepted to PRB Rapid Com

    Evidence for a New Dissipationless Regime in 2D Electronic Transport

    Full text link
    In an ultra-clean 2D electron system (2DES) subjected to crossed millimeterwave (30--150 GHz) and weak (B < 2 kG) magnetic fields, a series of apparently dissipationless states emerges as the system is detuned from cyclotron resonances. Such states are characterized by an exponentially vanishing low-temperature longitudinal resistance and a classical Hall resistance. The activation energies associated with such states exceeds the Landau level spacing by an order of magnitude. Our findings are likely indicative of a collective ground state previously unknown for 2DES.Comment: 4 pages, 2 figure
    • …
    corecore