756 research outputs found

    Entanglement in Valence-Bond-Solid States

    Full text link
    This article reviews the quantum entanglement in Valence-Bond-Solid (VBS) states defined on a lattice or a graph. The subject is presented in a self-contained and pedagogical way. The VBS state was first introduced in the celebrated paper by I. Affleck, T. Kennedy, E. H. Lieb and H. Tasaki (abbreviation AKLT is widely used). It became essential in condensed matter physics and quantum information (measurement-based quantum computation). Many publications have been devoted to the subject. Recently entanglement was studied in the VBS state. In this review we start with the definition of a general AKLT spin chain and the construction of VBS ground state. In order to study entanglement, a block subsystem is introduced and described by the density matrix. Density matrices of 1-dimensional models are diagonalized and the entanglement entropies (the von Neumann entropy and Renyi entropy) are calculated. In the large block limit, the entropies also approach finite limits. Study of the spectrum of the density matrix led to the discovery that the density matrix is proportional to a projector.Comment: Published version, 80 pages, 8 figures; references update

    Ground state and low excitations of an integrable chain with alternating spins

    Get PDF
    An anisotropic integrable spin chain, consisting of spins s=1s=1 and s=12s=\frac{1}{2}, is investigated \cite{devega}. It is characterized by two real parameters cˉ\bar{c} and c~\tilde{c}, the coupling constants of the spin interactions. For the case cˉ<0\bar{c}<0 and c~<0\tilde{c}<0 the ground state configuration is obtained by means of thermodynamic Bethe ansatz. Furthermore the low excitations are calculated. It turns out, that apart from free magnon states being the holes in the ground state rapidity distribution, there exist bound states given by special string solutions of Bethe ansatz equations (BAE) in analogy to \cite{babelon}. The dispersion law of these excitations is calculated numerically.Comment: 16 pages, LaTeX, uses ioplppt.sty and PicTeX macro

    Bulk-Edge correspondence of entanglement spectrum in 2D spin ground states

    Full text link
    General local spin SS ground states, described by a Valence Bond Solid (VBS) on a two dimensional lattice are studied. The norm of these ground states is mapped to a classical O(3) model on the same lattice. Using this quantum-to-classical mapping we obtain the partial density matrix ρA\rho_{A} associated with a subsystem A{A} of the original ground state. We show that the entanglement spectrum of ρA\rho_{\rm A} in a translation invariant lattice is given by the spectrum of a quantum spin chain at the boundary of region AA, with local Heisenberg type interactions between spin 1/2 particles.Comment: 8 pages, 4 figures, one section and references adde

    Fusion products, Kostka polynomials, and fermionic characters of su(r+1)_k

    Full text link
    Using a form factor approach, we define and compute the character of the fusion product of rectangular representations of \hat{su}(r+1). This character decomposes into a sum of characters of irreducible representations, but with q-dependent coefficients. We identify these coefficients as (generalized) Kostka polynomials. Using this result, we obtain a formula for the characters of arbitrary integrable highest-weight representations of \hat{su}(r+1) in terms of the fermionic characters of the rectangular highest weight representations.Comment: 21 pages; minor changes, typos correcte

    The XXZ model with anti-periodic twisted boundary conditions

    Full text link
    We derive functional equations for the eigenvalues of the XXZ model subject to anti-diagonal twisted boundary conditions by means of fusion of transfer matrices and by Sklyanin's method of separation of variables. Our findings coincide with those obtained using Baxter's method and are compared to the recent solution of Galleas. As an application we study the finite size scaling of the ground state energy of the model in the critical regime.Comment: 22 pages and 3 figure

    Boundary bound states and boundary bootstrap in the sine-Gordon model with Dirichlet boundary conditions.

    Full text link
    We present a complete study of boundary bound states and related boundary S-matrices for the sine-Gordon model with Dirichlet boundary conditions. Our approach is based partly on the bootstrap procedure, and partly on the explicit solution of the inhomogeneous XXZ model with boundary magnetic field and of the boundary Thirring model. We identify boundary bound states with new ``boundary strings'' in the Bethe ansatz. The boundary energy is also computed.Comment: 25 pages, harvmac macros Report USC-95-001

    A holomorphic representation of the Jacobi algebra

    Full text link
    A representation of the Jacobi algebra h1su(1,1)\mathfrak{h}_1\rtimes \mathfrak{su}(1,1) by first order differential operators with polynomial coefficients on the manifold C×D1\mathbb{C}\times \mathcal{D}_1 is presented. The Hilbert space of holomorphic functions on which the holomorphic first order differential operators with polynomials coefficients act is constructed.Comment: 34 pages, corrected typos in accord with the printed version and the Errata in Rev. Math. Phys. Vol. 24, No. 10 (2012) 1292001 (2 pages) DOI: 10.1142/S0129055X12920018, references update

    Tensor operators and Wigner-Eckart theorem for the quantum superalgebra U_{q}[osp(1\mid 2)]

    Full text link
    Tensor operators in graded representations of Z_{2}-graded Hopf algebras are defined and their elementary properties are derived. Wigner-Eckart theorem for irreducible tensor operators for U_{q}[osp(1\mid 2)] is proven. Examples of tensor operators in the irreducible representation space of Hopf algebra U_{q}[osp(1\mid 2)] are considered. The reduced matrix elements for the irreducible tensor operators are calculated. A construction of some elements of the center of U_{q}[osp(1\mid 2)] is given.Comment: 16 pages, Late
    corecore