209 research outputs found

    Hydrodynamic Modes for Granular Gases

    Full text link
    The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d=3) or disks (d=2) corresponding to d+2 hydrodynamic modes, are calculated in the long wavelength limit for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an exactly solvable kinetic model. A collisional continuum is bounded away from the hydrodynamic spectrum, assuring a hydrodynamic description at long times. The bound is closely related to the power law decay of the velocity distribution in the reference homogeneous cooling state

    Kinetic Theory of Response Functions for the Hard Sphere Granular Fluid

    Full text link
    The response functions for small spatial perturbations of a homogeneous granular fluid have been described recently. In appropriate dimensionless variables, they have the form of stationary state time correlation functions. Here, these functions are expressed in terms of reduced single particle functions that are expected to obey a linear kinetic equation. The functional assumption required for such a kinetic equation, and a Markov approximation for its implementation are discussed. If, in addition, static velocity correlations are neglected, a granular fluid version of the linearized Enskog kinetic theory is obtained. The derivation makes no a priori limitation on the density, space and time scale, nor degree of inelasticity. As an illustration, recently derived Helfand and Green-Kubo expressions for the Navier-Stokes order transport coefficients are evaluated with this kinetic theory. The results are in agreement with those obtained from the Chapman-Enskog solution to the nonlinear Enskog kinetic equation.Comment: Submitted to J. Stat. Mec

    Aging to non-Newtonian hydrodynamics in a granular gas

    Get PDF
    The evolution to the steady state of a granular gas subject to simple shear flow is analyzed by means of computer simulations. It is found that, regardless of its initial preparation, the system reaches (after a transient period lasting a few collisions per particle) a non-Newtonian (unsteady) hydrodynamic regime, even at strong dissipation and for states where the time scale associated with inelastic cooling is shorter than the one associated with the irreversible fluxes. Comparison with a simplified rheological model shows a good agreement.Comment: 6 pages, 4 figures; v2: improved version to be published in EP

    Enskog Theory for Polydisperse Granular Mixtures. I. Navier-Stokes order Transport

    Full text link
    A hydrodynamic description for an ss-component mixture of inelastic, smooth hard disks (two dimensions) or spheres (three dimensions) is derived based on the revised Enskog theory for the single-particle velocity distribution functions. In this first portion of the two-part series, the macroscopic balance equations for mass, momentum, and energy are derived. Constitutive equations are calculated from exact expressions for the fluxes by a Chapman-Enskog expansion carried out to first order in spatial gradients, thereby resulting in a Navier-Stokes order theory. Within this context of small gradients, the theory is applicable to a wide range of restitution coefficients and densities. The resulting integral-differential equations for the zeroth- and first-order approximations of the distribution functions are given in exact form. An approximate solution to these equations is required for practical purposes in order to cast the constitutive quantities as algebraic functions of the macroscopic variables; this task is described in the companion paper.Comment: 36 pages, to be published in Phys. Rev.

    Nonlinear viscosity and velocity distribution function in a simple longitudinal flow

    Full text link
    A compressible flow characterized by a velocity field ux(x,t)=ax/(1+at)u_x(x,t)=ax/(1+at) is analyzed by means of the Boltzmann equation and the Bhatnagar-Gross-Krook kinetic model. The sign of the control parameter (the longitudinal deformation rate aa) distinguishes between an expansion (a>0a>0) and a condensation (a<0a<0) phenomenon. The temperature is a decreasing function of time in the former case, while it is an increasing function in the latter. The non-Newtonian behavior of the gas is described by a dimensionless nonlinear viscosity η(a)\eta^*(a^*), that depends on the dimensionless longitudinal rate aa^*. The Chapman-Enskog expansion of η\eta^* in powers of aa^* is seen to be only asymptotic (except in the case of Maxwell molecules). The velocity distribution function is also studied. At any value of aa^*, it exhibits an algebraic high-velocity tail that is responsible for the divergence of velocity moments. For sufficiently negative aa^*, moments of degree four and higher may diverge, while for positive aa^* the divergence occurs in moments of degree equal to or larger than eight.Comment: 18 pages (Revtex), including 5 figures (eps). Analysis of the heat flux plus other minor changes added. Revised version accepted for publication in PR

    Tracer diffusion in granular shear flows

    Full text link
    Tracer diffusion in a granular gas in simple shear flow is analyzed. The analysis is made from a perturbation solution of the Boltzmann kinetic equation through first order in the gradient of the mole fraction of tracer particles. The reference state (zeroth-order approximation) corresponds to a Sonine solution of the Boltzmann equation, which holds for arbitrary values of the restitution coefficients. Due to the anisotropy induced in the system by the shear flow, the mass flux defines a diffusion tensor DijD_{ij} instead of a scalar diffusion coefficient. The elements of this tensor are given in terms of the restitution coefficients and mass and size ratios. The dependence of the diffusion tensor on the parameters of the problem is illustrated in the three-dimensional case. The results show that the influence of dissipation on the elements DijD_{ij} is in general quite important, even for moderate values of the restitution coefficients. In the case of self-diffusion (mechanically equivalent particles), the trends observed in recent molecular dynamics simulations are similar to those obtained here from the Boltzmann kinetic theory.Comment: 5 figure

    Diffusion in a Granular Fluid - Theory

    Full text link
    Many important properties of granular fluids can be represented by a system of hard spheres with inelastic collisions. Traditional methods of nonequilibrium statistical mechanics are effective for analysis and description of the inelastic case as well. This is illustrated here for diffusion of an impurity particle in a fluid undergoing homogeneous cooling. An appropriate scaling of the Liouville equation is described such that the homogeneous cooling ensemble and associated time correlation functions map to those of a stationary state. In this form the familiar methods of linear response can be applied, leading to Green - Kubo and Einstein representations of diffusion in terms of the velocity and mean square displacement correlation functions. These correlation functions are evaluated approximately using a cumulant expansion and from kinetic theory, providing the diffusion coefficient as a function of the density and the restitution coefficients. Comparisons with results from molecular dynamics simulation are given in the following companion paper

    Warming Up Density Functional Theory

    Full text link
    Density functional theory (DFT) has become the most popular approach to electronic structure across disciplines, especially in material and chemical sciences. Last year, at least 30,000 papers used DFT to make useful predictions or give insight into an enormous diversity of scientific problems, ranging from battery development to solar cell efficiency and far beyond. The success of this field has been driven by usefully accurate approximations based on known exact conditions and careful testing and validation. In the last decade, applications of DFT in a new area, warm dense matter, have exploded. DFT is revolutionizing simulations of warm dense matter including applications in controlled fusion, planetary interiors, and other areas of high energy density physics. Over the past decade or so, molecular dynamics calculations driven by modern density functional theory have played a crucial role in bringing chemical realism to these applications, often (but not always) with excellent agreement with experiment. This chapter summarizes recent work from our group on density functional theory at non-zero temperatures, which we call thermal DFT. We explain the relevance of this work in the context of warm dense matter, and the importance of quantum chemistry to this regime. We illustrate many basic concepts on a simple model system, the asymmetric Hubbard dimer

    Hydrodynamic modes, Green-Kubo relations, and velocity correlations in dilute granular gases

    Full text link
    It is shown that the hydrodynamic modes of a dilute granular gas of inelastic hard spheres can be identified, and calculated in the long wavelength limit. Assuming they dominate at long times, formal expressions for the Navier-Stokes transport coefficients are derived. They can be expressed in a form that generalizes the Green-Kubo relations for molecular systems, and it is shown that they can also be evaluated by means of NN-particle simulation methods. The form of the hydrodynamic modes to zeroth order in the gradients is used to detect the presence of inherent velocity correlations in the homogeneous cooling state, even in the low density limit. They manifest themselves in the fluctuations of the total energy of the system. The theoretical predictions are shown to be in agreement with molecular dynamics simulations. Relevant related questions deserving further attention are pointed out

    Diffusion of impurities in a granular gas

    Full text link
    Diffusion of impurities in a granular gas undergoing homogeneous cooling state is studied. The results are obtained by solving the Boltzmann--Lorentz equation by means of the Chapman--Enskog method. In the first order in the density gradient of impurities, the diffusion coefficient DD is determined as the solution of a linear integral equation which is approximately solved by making an expansion in Sonine polynomials. In this paper, we evaluate DD up to the second order in the Sonine expansion and get explicit expressions for DD in terms of the restitution coefficients for the impurity--gas and gas--gas collisions as well as the ratios of mass and particle sizes. To check the reliability of the Sonine polynomial solution, analytical results are compared with those obtained from numerical solutions of the Boltzmann equation by means of the direct simulation Monte Carlo (DSMC) method. In the simulations, the diffusion coefficient is measured via the mean square displacement of impurities. The comparison between theory and simulation shows in general an excellent agreement, except for the cases in which the gas particles are much heavier and/or much larger than impurities. In theses cases, the second Sonine approximation to DD improves significantly the qualitative predictions made from the first Sonine approximation. A discussion on the convergence of the Sonine polynomial expansion is also carried out.Comment: 9 figures. to appear in Phys. Rev.
    corecore