13,886 research outputs found

    SALT Long-slit Spectroscopy of Luminous Obscured Quasars: An Upper Limit on the Size of the Narrow-Line Region?

    Get PDF
    We present spatially resolved long-slit spectroscopy from the Southern African Large Telescope (SALT) to examine the spatial extent of the narrow-line regions (NLRs) of a sample of 8 luminous obscured quasars at 0.10 < z < 0.43. Our results are consistent with an observed shallow slope in the relationship between NLR size and L_[OIII], which has been interpreted to indicate that NLR size is limited by the density and ionization state of the NLR gas rather than the availability of ionizing photons. We also explore how the NLR size scales with a more direct measure of instantaneous AGN power using mid-IR photometry from WISE, which probes warm to hot dust near the central black hole and so, unlike [OIII], does not depend on the properties of the NLR. Using our results as well as samples from the literature, we obtain a power-law relationship between NLR size and L_8micron that is significantly steeper than that observed for NLR size and L_[OIII]. We find that the size of the NLR goes approximately as L^(1/2)_8micron, as expected from the simple scenario of constant-density clouds illuminated by a central ionizing source. We further see tentative evidence for a flattening of the relationship between NLR size and L_8micron at the high luminosity end, and propose that we are seeing a limiting NLR size of 10 - 20 kpc, beyond which the availability of gas to ionize becomes too low. We find that L_[OIII] ~ L_8micron^(1.4), consistent with a picture in which the L_[OIII] is dependent on the volume of the NLR. These results indicate that high-luminosity quasars have a strong effect in ionizing the available gas in a galaxy.Comment: 9 Pages, 5 figures, accepted to Ap

    Composite Spectral Energy Distributions and Infrared-Optical Colors of Type 1 and Type 2 Quasars

    Full text link
    We present observed mid-infrared and optical colors and composite spectral energy distributions (SEDs) of type 1 (broad-line) and 2 (narrow-line) quasars selected from Sloan Digital Sky Survey (SDSS) spectroscopy. A significant fraction of powerful quasars are obscured by dust, and are difficult to detect in optical photometric or spectroscopic surveys. However these may be more easily identified on the basis of mid-infrared (MIR) colors and SEDs. Using samples of SDSS type 1 type 2 matched in redshift and [OIII] luminosity, we produce composite rest-frame 0.2-15 micron SEDs based on SDSS, UKIDSS, and Wide-Field Infrared Survey Explorer (WISE) photometry and perform model fits using simple galaxy and quasar SED templates. The SEDs of type 1 and 2 quasars are remarkably similar, with the differences explained primarily by the extinction of the quasar component in the type 2 systems. For both types of quasar, the flux of the AGN relative to the host galaxy increases with AGN luminosity (L_[OIII]) and redder observed MIR color, but we find only weak dependencies of the composite SEDs on mechanical jet power as determined through radio luminosity. We conclude that luminous quasars can be effectively selected using simple MIR color criteria similar to those identified previously (W1-W2 > 0.7 [Vega]), although these criteria miss many heavily obscured objects. Obscured quasars can be further identified based on optical-IR colors (for example, (u-W3 [AB]) > 1.4(W1-W2 [Vega])+3.2). These results illustrate the power of large statistical studies of obscured quasars selected on the basis of mid-IR and optical photometry.Comment: Accepted for publication in ApJ; 14 pages, 9 figures, 2 tables; composite Type 1 and Type 2 quasar SEDs available at http://www.dartmouth.edu/~hickox/Hickox2017_QSO_SED_Table1.tx

    Gemini Long-slit Observations of Luminous Obscured Quasars: Further Evidence for an Upper Limit on the Size of the Narrow-Line Region

    Full text link
    We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4<z<0.70.4 < z < 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [OIII]λ5007\lambda5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 1015^{-15} erg s1^{-1} cm2^{-2} arcsec2^{-2}. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1 - 0.2 dex on average, as compared to measurements made to best-fit S\'{e}rsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log(L8μm/ergs1)=44.445.4\log{(L_{8 \mu \mathrm{m}} / \mathrm{erg\, s}^{-1})} = 44.4 - 45.4) also provide strong evidence that there is a flattening of the relationship between NLR size and AGN luminosity at a seeing-corrected size of 7\sim 7 kpc. The objects in this sample have high luminosities which place them in a previously under-explored portion of the size-luminosity relationship. These results support the existence of a maximal size of the narrow-line region around luminous quasars; beyond this size either there is not enough gas, or the gas is over-ionized and does not produce enough [OIII]λ5007\lambda5007 emission.Comment: 10 pages, 6 figures, accepted for publication in the Astrophysical Journa

    BEC-BCS Crossover of a Trapped Two-Component Fermi Gas with Unequal Masses

    Full text link
    We determine the energetically lowest lying states in the BEC-BCS crossover regime of s-wave interacting two-component Fermi gases under harmonic confinement by solving the many-body Schrodinger equation using two distinct approaches. Essentially exact basis set expansion techniques are applied to determine the energy spectrum of systems with N=4 fermions. Fixed-node diffusion Monte Carlo methods are applied to systems with up to N=20 fermions, and a discussion of different guiding functions used in the Monte Carlo approach to impose the proper symmetry of the fermionic system is presented. The energies are calculated as a function of the s-wave scattering length a_s for N=2-20 fermions and different mass ratios \kappa of the two species. On the BEC and BCS sides, our energies agree with analytically-determined first-order correction terms. We extract the scattering length and the effective range of the dimer-dimer system up to \kappa = 20. Our energies for the strongly-interacting trapped system in the unitarity regime show no shell structure, and are well described by a simple expression, whose functional form can be derived using the local density approximation, with one or two parameters. The universal parameter \xi for the trapped system for various \kappa is determined, and comparisons with results for the homogeneous system are presented.Comment: 11 pages, 6 figures, extended versio

    Gemini Long-Slit Observations of Luminous Obscured Quasars: Further Evidence for an Upper Limit on the Size of the Narrow-Line Region

    Get PDF
    We examine the spatial extent of the narrow-line regions (NLRs) of a sample of 30 luminous obscured quasars at 0.4 \u3c z \u3c 0.7 observed with spatially resolved Gemini-N GMOS long-slit spectroscopy. Using the [O III] λ5007 emission feature, we estimate the size of the NLR using a cosmology-independent measurement: the radius where the surface brightness falls to 10–15 erg s–1 cm–2 arcsec–2. We then explore the effects of atmospheric seeing on NLR size measurements and conclude that direct measurements of the NLR size from observed profiles are too large by 0.1-0.2 dex on average, as compared to measurements made to best-fit Sérsic or Voigt profiles convolved with the seeing. These data, which span a full order of magnitude in IR luminosity (log (L 8 μm/erg s–1) = 44.4-45.4), also provide strong evidence that there is a flattening of the relationship between NLR size and active galactic nucleus luminosity at a seeing-corrected size of ~7 kpc. The objects in this sample have high luminosities which place them in a previously under-explored portion of the size-luminosity relationship. These results support the existence of a maximal size of the NLR around luminous quasars; beyond this size, there is either not enough gas or the gas is over-ionized and does not produce enough [O III] λ5007 emission

    Mid-Infrared Observations of Class I/Flat-Spectrum Systems in Six Nearby Molecular Clouds

    Get PDF
    We have obtained new mid-infrared observations of 65 Class I/Flat-Spectrum (F.S.) objects in the Perseus, Taurus, Chamaeleon I/II, Rho Ophiuchi, and Serpens dark clouds. We detected 45/48 (94%) of the single sources, 16/16 (100%) of the primary components, and 12/16 (75%) of the secondary/triple components of the binary/multiple objects surveyed. The composite spectral energy distributions (SEDs) for all of our sample sources are either Class I or F.S., and, in 15/16 multiple systems, at least one of the individual components displays a Class I or F.S. spectral index. However, the occurrence of mixed pairings, such as F.S. with Class I, F.S. with Class II, and, in one case, F.S. with Class III, is surprisingly frequent. Such behaviour is not consistent with that of multiple systems among T Tauri stars (TTS), where the companion of a classical TTS also tends to be a classical TTS, although other mixed pairings have been previously observed among Class II objects. Based on an analysis of the spectral indices of the individual binary components, there appears to be a higher proportion of mixed Class I/F.S. systems (65-80%) than that of mixed Classical/Weak-Lined TTS (25-40%), demonstrating that the envelopes of Class I/ F.S. systems are rapidly evolving during this evolutionary phase. We report the discovery of a steep spectral index secondary companion to ISO-ChaI 97, detected for the first time via our mid-infrared observations. In our previous near- infrared imaging survey of binary/multiple Class I/F.S. sources, ISO-ChaI 97 appeared to be single. With a spectral index of Alpha >= 3.9, the secondary component of this system is a member of a rare class of very steep spectral index objects, those with Alpha > 3. Only three such objects have previously been reported, all of which are either Class 0 or Class I.Comment: 31 pages, 4 figures, 6 table

    Superstrings and Topological Strings at Large N

    Get PDF
    We embed the large N Chern-Simons/topological string duality in ordinary superstrings. This corresponds to a large NN duality between generalized gauge systems with N=1 supersymmetry in 4 dimensions and superstrings propagating on non-compact Calabi-Yau manifolds with certain fluxes turned on. We also show that in a particular limit of the N=1 gauge theory system, certain superpotential terms in the N=1 system (including deformations if spacetime is non-commutative) are captured to all orders in 1/N by the amplitudes of non-critical bosonic strings propagating on a circle with self-dual radius. We also consider D-brane/anti-D-brane system wrapped over vanishing cycles of compact Calabi-Yau manifolds and argue that at large NN they induce a shift in the background to a topologically distinct Calabi-Yau, which we identify as the ground state system of the Brane/anti-Brane system.Comment: 30 pages, some minor clarifications adde

    Siegert pseudostates: completeness and time evolution

    Full text link
    Within the theory of Siegert pseudostates, it is possible to accurately calculate bound states and resonances. The energy continuum is replaced by a discrete set of states. Many questions of interest in scattering theory can be addressed within the framework of this formalism, thereby avoiding the need to treat the energy continuum. For practical calculations it is important to know whether a certain subset of Siegert pseudostates comprises a basis. This is a nontrivial issue, because of the unusual orthogonality and overcompleteness properties of Siegert pseudostates. Using analytical and numerical arguments, it is shown that the subset of bound states and outgoing Siegert pseudostates forms a basis. Time evolution in the context of Siegert pseudostates is also investigated. From the Mittag-Leffler expansion of the outgoing-wave Green's function, the time-dependent expansion of a wave packet in terms of Siegert pseudostates is derived. In this expression, all Siegert pseudostates--bound, antibound, outgoing, and incoming--are employed. Each of these evolves in time in a nonexponential fashion. Numerical tests underline the accuracy of the method

    Black hole polarization and new entropy bounds

    Get PDF
    Zaslavskii has suggested how to tighten Bekenstein's bound on entropy when the object is electrically charged. Recently Hod has provided a second tighter version of the bound applicable when the object is rotating. Here we derive Zaslavskii's optimized bound by considering the accretion of an ordinary charged object by a black hole. The force originating from the polarization of the black hole by a nearby charge is central to the derivation of the bound from the generalized second law. We also conjecture an entropy bound for charged rotating objects, a synthesis of Zaslavskii's and Hod's. On the basis of the no hair principle for black holes, we show that this last bound cannot be tightened further in a generic way by knowledge of ``global'' conserved charges, e.g., baryon number, which may be borne by the object.Comment: 21 pages, RevTex, Regularization of potential made clearer. Error in energy of the particle corrected with no consequence for final conclusions. New references adde

    A non-standard matter distribution in the RS1 model and the coupling constant of the radion

    Full text link
    In the zero mode approximation we solve exactly the equations of motion for linearized gravity in the Randall-Sundrum model with a non-standard distribution of matter in the neighbourhood of the negative tension brane. It is shown that the form of this distribution can strongly affect the coupling of the radion to matter. We believe that such a situation can arise in models with a realistic mechanisms of matter localization.Comment: 12 pages, LaTe
    corecore