1,438 research outputs found

    Leptogenesis, Z' bosons, and the reheating temperature of the Universe

    Full text link
    We study the impact for leptogenesis of new U(1) gauge bosons coupled to the heavy Majorana neutrinos. They can significantly enhance the efficiency of thermal scenarios in the weak washout regime as long as the Z' masses are not much larger than the reheating temperature (MZ<10TrhM_{Z'}<10 T_{rh}), with the highest efficiencies obtained for Z' bosons considerably heavier than the heavy neutrinos (MZ>100M1M_{Z'} > 100 M_1). We show how the allowed region of the parameter space is modified in the presence of a Z' and we also obtain the minimum reheating temperature that is required for these models to be successful.Comment: 14 pages, 6 figures; One figure added, discussion on the reheating temperature extende

    La alternativa del Garboso : sainete lírico dividido en un acto y tres cuadros

    Get PDF
    Estrenado en el Teatro Arriaga de Bilbao en la noche del 12 de diciembre de 1912Copia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 201

    Leptogenesis, neutrino masses and gauge unification

    Full text link
    Leptogenesis is considered in its natural context where Majorana neutrinos fit in a gauge unification scheme and therefore couple to some extra gauge bosons. The masses of some of these gauge bosons are expected to be similar to those of the heavy Majorana particles, and this can have important consequences for leptogenesis. In fact, the effect can go both ways. Stricter bounds are obtained on one hand due to the dilution of the CP-violating effect by new decay and scattering channels, while, in a re-heating scheme, the presence of gauge couplings facilitates the re-population of the Majorana states. The latter effect allows in particular for smaller Dirac couplings.Comment: 11pages, 7 figures. v2: definition of the lepton asymmetry corrected, small numerical changes for the baryon number, conclusion does not change; typos corrected and references adde

    Obstacles and benefits of the implementation of a reduced-rank smoother with a high resolution model of the tropical Atlantic Ocean

    Get PDF
    Most of oceanographic operational centers use three-dimensional data assimilation schemes to produce reanalyses. We investigate here the benefits of a smoother, i.e. a four-dimensional formulation of statistical assimilation. A square-root sequential smoother is implemented with a tropical Atlantic Ocean circulation model. A simple twin experiment is performed to investigate its benefits, compared to its corresponding filter. Despite model's non-linearities and the various approximations used for its implementation, the smoother leads to a better estimation of the ocean state, both on statistical (i.e. mean error level) and dynamical points of view, as expected from linear theory. Smoothed states are more in phase with the dynamics of the reference state, an aspect that is nicely illustrated with the chaotic dynamics of the North Brazil Current rings. We also show that the smoother efficiency is strongly related to the filter configuration. One of the main obstacles to implement the smoother is then to accurately estimate the error covariances of the filter. Considering this, benefits of the smoother are also investigated with a configuration close to situations that can be managed by operational center systems, where covariances matrices are fixed (optimal interpolation). We define here a simplified smoother scheme, called half-fixed basis smoother, that could be implemented with current reanalysis schemes. Its main assumption is to neglect the propagation of the error covariances matrix, what leads to strongly reduce the cost of assimilation. Results illustrate the ability of this smoother to provide a solution more consistent with the dynamics, compared to the filter. The smoother is also able to produce analyses independently of the observation frequency, so the smoothed solution appears more continuous in time, especially in case of a low frenquency observation network

    The Absorptive Extra Dimensions

    Full text link
    It is well known that gravity and neutrino oscillation can be used to probe large extra dimensions in a braneworld scenario. We argue that neutrino oscillation remains a useful probe even when the extra dimensions are small, because the brane-bulk coupling is likely to be large. Neutrino oscillation in the presence of a strong brane-bulk coupling is vastly different from the usual case of a weak coupling. In particular, some active neutrinos could be absorbed by the bulk when they oscillate from one kind to another, a signature which can be taken as the presence of an extra dimension. In a very large class of models which we shall discuss, the amount of absorption for all neutrino oscillations is controlled by a single parameter, a property which distinguishes extra dimensions from other mechanisms for losing neutrino fluxes.Comment: Introduction enlarged; conclusions added. To appear in Phys. Rev.

    Manifestations of Extra Dimensions in a Neutrino Telescope

    Get PDF
    Theories with large extra dimensions provide the possibility that a flavor neutrino, localized in a 3+1 brane, can mix with a singlet neutrino living in the bulk. This mixing leads to unconventional patterns of neutrino matter oscillations and we examine in details how these oscillations depend upon two parameters: the brane-bulk coupling ξ\xi and the effective mass μ\mu of the flavor neutrino inside matter. We find that high energy (E50(E \ge 50 GeV) νμ\nu_\mu neutrinos, to be detected by neutrino telescopes, can give signals of extra dimensions. With a 1 km3m^{3} neutrino telescope extra dimensions with radius down to 1μm1\mu m can be tested directly, while for smaller radius an indirect evidence can be established.Comment: 14 pages, 5 figures, added conclusion
    corecore