2,604 research outputs found

    The generating rank of the unitary and symplectic Grassmannians

    Full text link
    We prove that the Grassmannian of totally isotropic kk-spaces of the polar space associated to the unitary group SU2n(F)\mathsf{SU}_{2n}(\mathbb{F}) (nNn\in \mathbb{N}) has generating rank (2nk){2n\choose k} when FF4\mathbb{F}\ne \mathbb{F}_4. We also reprove the main result of Blok [Blok2007], namely that the Grassmannian of totally isotropic kk-spaces associated to the symplectic group Sp2n(F)\mathsf{Sp}_{2n}(\mathbb{F}) has generating rank (2nk)(2nk2){2n\choose k}-{2n\choose k-2}, when Char(F)2\rm{Char}(\mathbb{F})\ne 2

    The generating rank of the unitary and symplectic Grassmannians

    Get PDF
    AbstractWe prove that the Grassmannian of totally isotropic k-spaces of the polar space associated to the unitary group SU2n(F) (n∈N) has generating rank (2nk) when F≠F4. We also reprove the main result of Blok (2007) [3], namely that the Grassmannian of totally isotropic k-spaces associated to the symplectic group Sp2n(F) has generating rank (2nk)−(2nk−2), when Char(F)≠2

    Neutrino Trapping in a Supernova and Ion Screening

    Get PDF
    Neutrino-nucleus elastic scattering is reduced in dense matter because of correlations between ions. The static structure factor for a plasma of electrons and ions is calculated from Monte Carlo simulations and parameterized with a least squares fit. Our results imply a large increase in the neutrino mean free path. This strongly limits the trapping of neutrinos in a supernova by coherent neutral current interactions.Comment: 9 pages, 1 postscript figure using epsf.st

    Neutrino Interactions in Hot and Dense Matter

    Get PDF
    We study the charged and neutral current weak interaction rates relevant for the determination of neutrino opacities in dense matter found in supernovae and neutron stars. We establish an efficient formalism for calculating differential cross sections and mean free paths for interacting, asymmetric nuclear matter at arbitrary degeneracy. The formalism is valid for both charged and neutral current reactions. Strong interaction corrections are incorporated through the in-medium single particle energies at the relevant density and temperature. The effects of strong interactions on the weak interaction rates are investigated using both potential and effective field-theoretical models of matter. We investigate the relative importance of charged and neutral currents for different astrophysical situations, and also examine the influence of strangeness-bearing hyperons. Our findings show that the mean free paths are significantly altered by the effects of strong interactions and the multi-component nature of dense matter. The opacities are then discussed in the context of the evolution of the core of a protoneutron star.Comment: 41 pages, 25 figure

    Electron capture on iron group nuclei

    Get PDF
    We present Gamow-Teller strength distributions from shell model Monte Carlo studies of fp-shell nuclei that may play an important role in the pre-collapse evolution of supernovae. We then use these strength distributions to calculate the electron-capture cross sections and rates in the zero-momentum transfer limit. We also discuss the thermal behavior of the cross sections. We find large differences in these cross sections and rates when compared to the naive single-particle estimates. These differences need to be taken into account for improved modeling of the early stages of type II supernova evolution

    Neutrino Spectroscopy of the Early Phase of Nearby Supernovae

    Get PDF
    Neutrinos emitted during stellar core collapse up to their trapping phase carry information about the stage from which the Supernova explosion process initiates. The dominant νe\nu_e emission mechanism is by electron capture on free protons and f-p shell nuclei and the spectrum of these neutrinos is a function of the ambient physical conditions within the core as well as the nuclear equation of state. The number of collapse phase νe\nu_e which can be detected by Super-Kamioka and Sudbury Neutrino Observatory from a Supernova within 1 kpc, and their generic energy spectra are given.Comment: 9 pages of text and tables plus 2 pages of figures. Accepted for publication in Phys. Rev. Lett. on 11th Jul., 1997. Please e-mail Comments etc. to [email protected]

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore