1,383 research outputs found
Lorentzian spacetimes with constant curvature invariants in three dimensions
In this paper we study Lorentzian spacetimes for which all polynomial scalar
invariants constructed from the Riemann tensor and its covariant derivatives
are constant (CSI spacetimes) in three dimensions. We determine all such CSI
metrics explicitly, and show that for every CSI with particular constant
invariants there is a locally homogeneous spacetime with precisely the same
constant invariants. We prove that a three-dimensional CSI spacetime is either
(i) locally homogeneous or (ii) it is locally a Kundt spacetime. Moreover, we
show that there exists a null frame in which the Riemann (Ricci) tensor and its
derivatives are of boost order zero with constant boost weight zero components
at each order. Lastly, these spacetimes can be explicitly constructed from
locally homogeneous spacetimes and vanishing scalar invariant spacetimes.Comment: 14 pages; Modified to match published versio
Higher dimensional VSI spacetimes
We present the explicit metric forms for higher dimensional vanishing scalar
invariant (VSI) Lorentzian spacetimes. We note that all of the VSI spacetimes
belong to the higher dimensional Kundt class. We determine all of the VSI
spacetimes which admit a covariantly constant null vector, and we note that in
general in higher dimensions these spacetimes are of Ricci type III and Weyl
type III. The Ricci type N subclass is related to the chiral null models and
includes the relativistic gyratons and the higher dimensional pp-wave
spacetimes. The spacetimes under investigation are of particular interest since
they are solutions of supergravity or superstring theory.Comment: 14 pages, changes in second paragraph of the discussio
Metrics With Vanishing Quantum Corrections
We investigate solutions of the classical Einstein or supergravity equations
that solve any set of quantum corrected Einstein equations in which the
Einstein tensor plus a multiple of the metric is equated to a symmetric
conserved tensor constructed from sums of terms the involving
contractions of the metric and powers of arbitrary covariant derivatives of the
curvature tensor. A classical solution, such as an Einstein metric, is called
{\it universal} if, when evaluated on that Einstein metric, is a
multiple of the metric. A Ricci flat classical solution is called {\it strongly
universal} if, when evaluated on that Ricci flat metric,
vanishes. It is well known that pp-waves in four spacetime dimensions are
strongly universal. We focus attention on a natural generalisation; Einstein
metrics with holonomy in which all scalar invariants are zero
or constant. In four dimensions we demonstrate that the generalised
Ghanam-Thompson metric is weakly universal and that the Goldberg-Kerr metric is
strongly universal; indeed, we show that universality extends to all
4-dimensional Einstein metrics. We also discuss generalizations
to higher dimensions.Comment: 23 page
Mathematical Properties of a Class of Four-dimensional Neutral Signature Metrics
While the Lorenzian and Riemanian metrics for which all polynomial scalar
curvature invariants vanish (the VSI property) are well-studied, less is known
about the four-dimensional neutral signature metrics with the VSI property.
Recently it was shown that the neutral signature metrics belong to two distinct
subclasses: the Walker and Kundt metrics. In this paper we have chosen an
example from each of the two subcases of the Ricci-flat VSI Walker metrics
respectively.
To investigate the difference between the metrics we determine the existence
of a null, geodesic, expansion-free, shear-free and vorticity-free vector, and
classify these spaces using their infinitesimal holonomy algebras. The
geometric implications of the holonomy algebras are further studied by
identifying the recurrent or covariantly constant null vectors, whose existence
is required by the holonomy structure in each example. We conclude the paper
with a simple example of the equivalence algorithm for these pseudo-Riemannian
manifolds, which is the only approach to classification that provides all
necessary information to determine equivalence.Comment: 18 page
- …