90 research outputs found

    Scheduled feeding improves sleep in a mouse model of Huntington’s disease

    Get PDF
    Sleep disturbances are common features of neurodegenerative disorders including Huntington’s disease (HD). Sleep and circadian disruptions are recapitulated in animal models, providing the opportunity to evaluate the effectiveness of circadian interventions as countermeasures for neurodegenerative disease. For instance, time restricted feeding (TRF) successfully improved activity rhythms, sleep behavior and motor performance in mouse models of HD. Seeking to determine if these benefits extend to physiological measures of sleep, electroencephalography (EEG) was used to measure sleep/wake states and polysomnographic patterns in male and female wild-type (WT) and bacterial artificial chromosome transgenic (BACHD) adult mice, under TRF and ad lib feeding (ALF). Our findings show that male, but not female, BACHD mice exhibited significant changes in the temporal patterning of wake and non-rapid eye movement (NREM) sleep. The TRF intervention reduced the inappropriate early morning activity by increasing NREM sleep in the male BACHD mice. In addition, the scheduled feeding reduced sleep fragmentation (# bouts) in the male BACHD mice. The phase of the rhythm in rapid-eye movement (REM) sleep was significantly altered by the scheduled feeding in a sex-dependent manner. The treatment did impact the power spectral curves during the day in male but not female mice regardless of the genotype. Sleep homeostasis, as measured by the response to six hours of gentle handling, was not altered by the diet. Thus, TRF improves the temporal patterning and fragmentation of NREM sleep without impacting sleep homeostasis. This work adds critical support to the view that sleep is a modifiable risk factor in neurodegenerative diseases

    Micro-Fluidic Diffusion Coefficient Measurement

    Full text link
    A new method for diffusion coefficient measurement applicable to micro-fluidics is pre- sented. The method Iltilizes an analytical model describing laminar dispersion in rect- anglllar ~llicro_channe]s. The Illethod ~vas verified throllgh measllremen~ of fllloresceill diffusivity in water and aqueolls polymer solutions of differing concentration. The diffll- sivity of flllorescein was measlmed as 0.64 x 10-gm2/s in water, 0.49 x 10-gm2/s in the 4 gm/dl dextran solution and 0.38 x 10-9n12/s in the 8 gnl/dl dextran solution

    Microfluidic Paper-Based Analytical Devices (μPADs) and Micro Total Analysis Systems (μTAS): Development, Applications and Future Trends

    Get PDF

    On-line microdevice for stress proteomics

    No full text

    Building embedded quasi-time-optimal controller for two-wheeled self-balancing robot

    No full text
    In this paper, two-wheeled self-balancing robot problem is introduced, and a quasi-time-optimal approach is applied to synthesize the control law. The result is compared with that of other methods. The process for designing and building the testting model, implementing the synthesized control law is also described

    DYNAMIC COUPLING MODELING FORMED BY TURNING IN CUTTING DYNAMICS PROBLEMS (VELOCITY COUPLING)

    No full text
    Mathematical simulation and parameter identification of dynamic coupling between the tool and workpiece, formed through cutting, are considered. Data on the dynamic coupling characteristics under small variations of the coordinates in the neighborhood of equilibrium point are resulted. The coupling presented by the matrix of velocity coefficients is investigated
    corecore