931 research outputs found
Seeing motion and apparent motion
In apparent motion experiments, participants are presented with what is in fact a succession of two brief stationary stimuli at two different locations, but they report an impression of movement. Philosophers have recently debated whether apparent motion provides evidence in favour of a particular account of the nature of temporal experience. I argue that the existing discussion in this area is premised on a mistaken view of the phenomenology of apparent motion and, as a result, the space of possible philosophical positions has not yet been fully explored. In particular, I argue that the existence of apparent motion is compatible with an account of the nature of temporal experience that involves a version of direct realism. In doing so, I also argue against two other claims often made about apparent motion, viz. that apparent motion is the psychological phenomenon that underlies motion experience in the cinema, and that apparent motion is subjectively indistinguishable from real motion
Accelerating universe emergent from the landscape
We propose that the existence of the string landscape suggests the universe
can be in a quantum glass state, where an extremely large viscosity is
generated, and long distance dynamics slows down. At the same time, the short
distance dynamics is not altered due to the separation of time scales. This
scenario can help to understand some controversies in cosmology, for example
the natural existence of slow roll inflation and dark energy in the landscape,
the apparent smallness of the cosmological constant. We see also that moduli
stabilization is no longer necessary. We further identify the glass transition
point, where the viscosity diverges, as the location of the cosmic horizon. We
try to reconstruct the geometry of the accelerating universe from the structure
of the landscape, and find that the metric should have an infinite jump when
crossing the horizon. We predict that the static coordinate metric for dS space
breaks down outside the horizon.Comment: 20 pages, no figures, harvma
New Jacobi-Like Identities for Z_k Parafermion Characters
We state and prove various new identities involving the Z_K parafermion
characters (or level-K string functions) for the cases K=4, K=8, and K=16.
These identities fall into three classes: identities in the first class are
generalizations of the famous Jacobi theta-function identity (which is the K=2
special case), identities in another class relate the level K>2 characters to
the Dedekind eta-function, and identities in a third class relate the K>2
characters to the Jacobi theta-functions. These identities play a crucial role
in the interpretation of fractional superstring spectra by indicating spacetime
supersymmetry and aiding in the identification of the spacetime spin and
statistics of fractional superstring states.Comment: 72 pages (or 78/2 = 39 pages in reduced format
The shortest cut in brane cosmology
We consider brane cosmology studying the shortest null path on the brane for
photons, and in the bulk for gravitons. We derive the differential equation for
the shortest path in the bulk for a 1+4 cosmological metric. The time cost and
the redshifts for photons and gravitons after traveling their respective path
are compared. We consider some numerical solutions of the shortest path
equation, and show that there is no shortest path in the bulk for the
Randall-Sundrum vacuum brane solution, the linear cosmological solution of
Bin\'etruy, et al for , and for some expanding brane
universes.Comment: 20 pages, 7 figure
Initiation of the SGLT2 inhibitor canagliflozin to prevent kidney and heart failure outcomes guided by HbA1c, albuminuria, and predicted risk of kidney failure
Background: Sodium glucose co-transporter-2 (SGLT2) inhibitors reduce the risk of kidney and heart failure events independent of glycemic effects. We assessed whether initiation of the SGLT2 inhibitor canagliflozin guided by multivariable predicted risk based on clinical characteristics and novel biomarkers is more efficient to prevent clinical outcomes compared to a strategy guided by HbA1c or urinary-albumin-creatinine ratio (UACR) alone. Methods: We performed a post-hoc analysis of the CANVAS trial including 3713 patients with available biomarker measurements. We compared the number of composite kidney (defined as a sustained 40% decline in eGFR, chronic dialysis, kidney transplantation, or kidney death) and composite heart failure outcomes (defined as heart failure hospitalization or cardiovascular (CV) death) prevented per 1000 patients treated for 5 years when canagliflozin was initiated in patients according to HbA1c ≥ 7.5%, UACR, or multivariable risk models consisting of: (1) clinical characteristics, or (2) clinical characteristics and novel biomarkers. Differences in the rates of events prevented between strategies were tested by Chi2-statistic. Results: After a median follow-up of 6.1 years, 144 kidney events were recorded. The final clinical model included age, previous history of CV disease, systolic blood pressure, UACR, hemoglobin, body weight, albumin, estimated glomerular filtration rate, and randomized treatment assignment. The combined biomarkers model included all clinical characteristics, tumor necrosis factor receptor-1, kidney injury molecule-1, matrix metallopeptidase-7 and interleukin-6. Treating all patients with HbA1c ≥ 7.5% (n = 2809) would prevent 33.0 (95% CI 18.8 to 43.3) kidney events at a rate of 9.6 (95% CI 5.5 to 12.6) events prevented per 1000 patients treated for 5 years. The corresponding rates were 5.8 (95% CI 3.4 to 7.9), 16.6 (95% CI 9.5 to 22.0) (P < 0.001 versus HbA1c or UACR approach), and 17.5 (95% CI 10.0 to 23.0) (P < 0.001 versus HbA1c or UACR approach; P = 0.54 versus clinical model). Findings were similar for the heart failure outcome. Conclusion: Initiation of canagliflozin based on an estimated risk-based approach prevented more kidney and heart failure outcomes compared to a strategy based on HbA1c or UACR alone. There was no apparent gain from adding novel biomarkers to the clinical risk model. These findings support the use of risk-based assessment using clinical markers to guide initiation of SGLT2 inhibitors in patients with type 2 diabetes
Cosmology of the Tachyon in Brane Inflation
In certain implementations of the brane inflationary paradigm, the exit from
inflation occurs when the branes annihilate through tachyon condensation. We
investigate various cosmological effects produced by this tachyonic era. We
find that only a very small region of the parameter space (corresponding to
slow-roll with tiny inflaton mass) allows for the tachyon to contribute some
e-folds to inflation. In addition, non-adiabatic density perturbations are
generated at the end of inflation. When the brane is moving relativistically
this contribution can be of the same order as fluctuations produced 55 e-folds
before the end of inflation. The additional contribution is very nearly
scale-invariant and enhances the tensor/scalar ratio. Additional
non-gaussianities will also be generated, sharpening current constraints on
DBI-type models which already predict a significantly non-gaussian signal.Comment: 30 pages, 2 figures; v3, minor revision, JCAP versio
Ambiguous figures and the content of experience
Representationalism is the position that the phenomenal character of an experience is either identical with, or supervenes on, the content of that experience. Many representationalists hold that the relevant content of experience is nonconceptual. I propose a counterexample to this form of representationalism that arises from the phenomenon of Gestalt switching, which occurs when viewing ambiguous figures. First, I argue that one does not need to appeal to the conceptual content of experience or to judgements to account for Gestalt switching. I then argue that experiences of certain ambiguous figures are problematic because they have different phenomenal characters but that no difference in the nonconceptual content of these experiences can be identified. I consider three solutions to this problem that have been proposed by both philosophers and psychologists and conclude that none can account for all the ambiguous figures that pose the problem. I conclude that the onus is on representationalists to specify the relevant difference in content or to abandon their position
Comparing Brane Inflation to WMAP
We compare the simplest realistic brane inflationary model to recent
cosmological data, including WMAP 3-year cosmic microwave background (CMB)
results, Sloan Digital Sky Survey luminous red galaxies (SDSS LRG) power
spectrum data and Supernovae Legacy Survey (SNLS) Type 1a supernovae distance
measures. Here, the inflaton is simply the position of a -brane which is
moving towards a -brane sitting at the bottom of a throat (a warped,
deformed conifold) in the flux compactified bulk in Type IIB string theory. The
analysis includes both the usual slow-roll scenario and the Dirac-Born-Infeld
scenario of slow but relativistic rolling. Requiring that the throat is inside
the bulk greatly restricts the allowed parameter space. We discuss possible
scenarios in which large tensor mode and/or non-Gaussianity may emerge. Here,
the properties of a large tensor mode deviate from that in the usual slow-roll
scenario, providing a possible stringy signature. Overall, within the brane
inflationary scenario, the cosmological data is providing information about the
properties of the compactification of the extra dimensions.Comment: 45 pages 11 figure
The Complete KLT-Map Between Gravity and Gauge Theories
We present the complete map of any pair of super Yang-Mills theories to
supergravity theories as dictated by the KLT relations in four dimensions.
Symmetries and the full set of associated vanishing identities are derived. A
graphical method is introduced which simplifies counting of states, and helps
in identifying the relevant set of symmetries.Comment: 41 pages, 16 figures, published version, typos corrected, references
adde
Brane Interaction as the Origin of Inflation
We reanalyze brane inflation with brane-brane interactions at an angle, which
include the special case of brane-anti-brane interaction. If nature is
described by a stringy realization of the brane world scenario today (with
arbitrary compactification), and if some additional branes were present in the
early universe, we find that an inflationary epoch is generically quite
natural, ending with a big bang when the last branes collide. In an interesting
brane inflationary scenario suggested by generic string model-building, we use
the density perturbation observed in the cosmic microwave background and the
coupling unification to find that the string scale is comparable to the GUT
scale.Comment: 28 pages, 8 figures, 2 tables, JHEP forma
- …