64 research outputs found

    Analyses of multiplicity distributions by means of the Modified Negative Binomial Distribution and its KNO scaling function

    Get PDF
    We analyze various data of multiplicity distributions by means of the Modified Negative Binomial Distribution (MNBD) and its KNO scaling function, since this MNBD explains the oscillating behavior of the cumulant moment observed in e^+e^- annihilations, h-h collisions and e-p collisions. In the present analyses, we find that the MNBD(discrete distributions) describes the data of charged particles in e^+e^- annihilations much better than the Negative Binomial Distribution (NBD). To investigate stochastic property of the MNBD, we derive the KNO scaling function from the discrete distribution by using a straightforward method and the Poisson transform. It is a new KNO function expressed by the Laguerre polynomials. In analyses of the data by using the KNO scaling function, we find that the MNBD describes the data better than the gamma function.Thus, it can be said that the MNBD is one of useful formulas as well as NBD.Comment: 12 pages, latex, 3 figure

    Local thermalization in d + Au collisions

    Full text link
    The extent of a locally equilibrated parton plasma in d + Au collisions at sqrt(s_NN) = 200 GeV is investigated as a function of centrality in a nonequilibrium-statistical framework. Based on a three-sources model, analytical solutions of a relativistic diffusion equation are in precise agreement with recent data for charged-particle pseudorapidity distributions. The moving midrapidity source indicates the size of the local thermal equilibrium region after hadronization. In central d + Au collisions it contains 19% of the produced particles.Comment: 4 pages, 1 figure, Proc. QM2005 Budapes

    Analyses of multiplicity distributions with \eta_c and Bose-Einstein correlations at LHC by means of generalized Glauber-Lachs formula

    Full text link
    Using the negative binomial distribution (NBD) and the generalized Glauber-Lachs (GGL) formula, we analyze the data on charged multiplicity distributions with pseudo-rapidity cutoffs \eta_c at 0.9, 2.36, and 7 TeV by ALICE Collaboration and at 0.2, 0.54, and 0.9 TeV by UA5 Collaboration. We confirm that the KNO scaling holds among the multiplicity distributions with \eta_c = 0.5 at \sqrt{s} = 0.2\sim2.36 TeV and estimate the energy dependence of a parameter 1/k in NBD and parameters 1/k and \gamma (the ratio of the average value of the coherent hadrons to that of the chaotic hadrons) in the GGL formula. Using empirical formulae for the parameters 1/k and \gamma in the GGL formula, we predict the multiplicity distributions with \eta_c = 0.5 at 7 and 14 TeV. Data on the 2nd order Bose-Einstein correlations (BEC) at 0.9 TeV by ALICE Collaboration and 0.9 and 2.36 TeV by CMS Collaboration are also analyzed based on the GGL formula. Prediction for the 3rd order BEC at 0.9 and 2.36 TeV are presented. Moreover, the information entropy is discussed

    Transverse momentum distribution with radial flow in relativistic diffusion model

    Get PDF
    Large transverse momentum distributions of identified particles observed at RHIC are analyzed by a relativistic stochastic model in the three dimensional (non-Euclidean) rapidity space. A distribution function obtained from the model is Gaussian-like in radial rapidity. It can well describe observed transverse momentum pTp_T distributions. Estimation of radial flow is made from the analysis of pTp_T distributions for pˉ\bar{p} in Au + Au Collisions. Temperatures are estimated from observed large pTp_T distributions under the assumption that the distribution function approaches to the Maxwell-Boltzmann distribution in the lower momentum limit. Power-law behavior of large pTp_T distribution is also derived from the model.Comment: 7 pages, 5 figures and 6 table
    • …
    corecore