1,899 research outputs found

    Gauge-Invariant Temperature Anisotropies and Primordial Non-Gaussianity

    Get PDF
    We provide the gauge-invariant expression for large-scale cosmic microwave background temperature fluctuations at second-order in perturbation theory. It enables to unambiguously define the nonlinearity parameter f_NL which is used by experimental collaborations to pin down the level of Non-Gaussianity in the temperature fluctuations. Furthermore, it contains a primordial term encoding all the information about the Non-Gaussianity generated at primordial epochs and about the mechanism which gave rise to cosmological perturbations, thus neatly disentangling the primordial contribution to Non-Gaussianity from the one caused by the post-inflationary evolution.Comment: 4 pages, LaTeX file. Revised to match the version to appear in Phys. Rev. Let

    Non-Gaussianity in the Cosmic Microwave Background Anisotropies at Recombination in the Squeezed limit

    Get PDF
    We estimate analytically the second-order cosmic microwave background temperature anisotropies at the recombination epoch in the squeezed limit and we deduce the contamination to the primordial local non-Gaussianity. We find that the level of contamination corresponds to f_NL^{con}=O(1) which is below the sensitivity of present experiments and smaller than the value O(5) recently claimed in the literature.Comment: LaTeX file; 15 pages. Slightly revised version. Main result unchange

    Non-Gaussianity from Inflation: Theory and Observations

    Get PDF
    This is a review of models of inflation and of their predictions for the primordial non-Gaussianity in the density perturbations which are thought to be at the origin of structures in the Universe. Non-Gaussianity emerges as a key observable to discriminate among competing scenarios for the generation of cosmological perturbations and is one of the primary targets of present and future Cosmic Microwave Background satellite missions. We give a detailed presentation of the state-of-the-art of the subject of non-Gaussianity, both from the theoretical and the observational point of view, and provide all the tools necessary to compute at second order in perturbation theory the level of non-Gaussianity in any model of cosmological perturbations. We discuss the new wave of models of inflation, which are firmly rooted in modern particle physics theory and predict a significant amount of non-Gaussianity. The review is addressed to both astrophysicists and particle physicists and contains useful tables which summarize the theoretical and observational results regarding non-Gaussianity.Comment: LaTeX file: 218 pages, 19 figures. Replaced to match the accepted version in Physics Reports. A high-resolution version of Fig. 2 can be downloaded from: http://www.pd.infn.it/~liguori/Non_Gaussianity

    Second-order matter perturbations in a LambdaCDM cosmology and non-Gaussianity

    Get PDF
    We obtain exact expressions for the effect of primordial non-Gaussianity on the matter density perturbation up to second order in a LambdaCDM cosmology, fully accounting for the general relativistic corrections arising on scales comparable with the Hubble radius. We present our results both in the Poisson gauge and in the comoving and synchronous gauge, which are relevant for comparison to different cosmological observables.Comment: 15 pages. LaTeX file. Invited article for CQG issue on non-linear cosmolog

    CMB temperature anisotropies from third order gravitational perturbations

    Full text link
    In this paper we present a complete computation of the Cosmic Microwave Background (CMB) anisotropies up to third order from gravitational perturbations accounting for scalar, vector and tensor perturbations. We then specify our results to the large scale limit, providing the evolution of the gravitational potentials in a flat universe filled with matter and cosmological constant which characterizes the Integrated Sachs-Wolfe effect. As a byproduct in the large scale approximation we are able to give non-perturbative solutions for the photon geodesic equations. Our results are the first step to provide a complete theoretical prediction for cubic non-linearities which are particularly relevant for characterizing the level of non-Gaussianity in the CMB through the detection of the four-point angular connected correlation function (trispectrum). For this purpose we also allow for generic initial conditions due to primordial non-Gaussianity.Comment: 19 pages, LateX file; typos corrected; some corrections made and several consistency checks performed regarding Eqs.(2.18); (2.28)-(2.29) and Eqs.(3.8)-(3.24) and Eq.(4.2). Version accepted for publication in JCA

    CMB Anisotropies at Second Order I

    Get PDF
    We present the computation of the full system of Boltzmann equations at second-order describing the evolution of the photon, baryon and cold dark matter fluids. These equations allow to follow the time evolution of the Cosmic Microwave Background (CMB) anisotropies at second-order at all angular scales from the early epoch, when the cosmological perturbations were generated, to the present through the recombination era. This paper sets the stage for the computation of the full second-order radiation transfer function at all scales and for a a generic set of initial conditions specifying the level of primordial non-Gaussianity. In a companion paper, we will present the computation of the three-point correlation function at recombination which is so relevant for the issue of non-Gaussianity in the CMB anisotropies.Comment: 26 pages, LaTeX file, typos correcte

    Critical behavior of dissipative two-dimensional spin lattices

    Full text link
    We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian and subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated to a dissipative ferromagnetic transition. We show that the Von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition even though the system is in a mixed state.Comment: Accepted for publication on Phys. Rev. B (6 pages, 5 figures

    On the non-Gaussianity from Recombination

    Get PDF
    The non-linear effects operating at the recombination epoch generate a non-Gaussian signal in the CMB anisotropies. Such a contribution is relevant because it represents a major part of the second-order radiation transfer function which must be determined in order to have a complete control of both the primordial and non-primordial part of non-Gaussianity in the CMB anisotropies. We provide an estimate of the level of non-Gaussianity in the CMB arising from the recombination epoch which shows up mainly in the equilateral configuration. We find that it causes a contamination to the possible measurement of the equilateral primordial bispectrum shifting the minimum detectable value of the non-Gaussian parameter f^equil_NL by Delta f^equil_NL= O(10) for an experiment like Planck.Comment: LaTeX file; 11 pages. v2: Typos corrected; references added; comments about the effective non-linearity parameter added in Sec. IV; comments added in the conclusions of Sec. IV. v3: References added; some clarifications added as footnotes 4 and 6, and in Sec. 3. Matches version accepted for publication in JCA

    Primordial Bispectrum Information from CMB Polarization

    Full text link
    After the precise observations of the Cosmic Microwave Background (CMB) anisotropy power spectrum, attention is now being focused on the higher order statistics of the CMB anisotropies. Since linear evolution preserves the statistical properties of the initial conditions, observed non-Gaussianity of the CMB will mirror primordial non-Gaussianity. Single field slow-roll inflation robustly predicts negligible non-Gaussianity so an indication of non-Gaussianity will suggest alternative scenarios need to be considered. In this paper we calculate the information on primordial non-Gaussianity encoded in the polarization of the CMB. After deriving the optimal weights for a cubic estimator we evaluate the Signal-to-Noise ratio of the estimator for WMAP, Planck and an ideal cosmic variance limited experiment. We find that when the experiment can observe CMB polarization with good sensitivity, the sensitivity to primordial non-Gaussianity increases by roughly a factor of two. We also test the weakly non-Gaussian assumption used to derive the optimal weight factor by calculating the degradation factor produced by the gravitational lensing induced connected four-point function. The physical scales in the radiative transfer functions are largely irrelevant for the constraints on the primordial non-Gaussianity. We show that the total (S/N)^2 is simply proportional to the number of observed pixels on the sky.Comment: To be submitted to PRD, 25 pages, 6 figure
    • …
    corecore